• Title/Summary/Keyword: fragility analysis

Search Result 423, Processing Time 0.025 seconds

Efficient Analysis for the Hybrid Structural Systems with Upper Shear-Wall and Lower Frames (상부전단벽과 하부골조로 구성된 복합구조 시스템의 효율적 해석)

  • 장극관;안태상
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.3
    • /
    • pp.441-451
    • /
    • 2002
  • Recently, Increasing residential-commercial buildings are composed of upper wall and lower frame type. As structural fragility, a large numbers of researchers have tried to develope the efficient analysis methods. But these studies were too theoretical and were not considered the lateral load which was required in analysing the transfer level in addition to being used nonlinear program which was difficult to use for practical design. thus, results of these studies we not appropriate to apply practical design, therefore, in this paper, the procedure of the current design practice were compared with that of used FEM method and presented new modeling method. in particular, an efficient analytical model which can be used in practical design of residential-commercial buildings for vortical and seismic loads was proposed and the usefulness of proposed model was verified.

A Novel Approach for Gastric Cancer Staging in Elderly Patients Based on the Lymph Node Ratio

  • Park, Joonseon;Jeon, Chul Hyo;Kim, So Jung;Seo, Ho Seok;Song, Kyo Young;Lee, Han Hong
    • Journal of Gastric Cancer
    • /
    • v.21 no.1
    • /
    • pp.84-92
    • /
    • 2021
  • Purpose: To date, no studies have been performed on staging based on the lymph node ratio (LNR) in elderly patients with gastric cancer who may require limited lymph node (LN) dissection due to morbidity and tissue fragility. We aimed to develop a new N staging system using the LNR in elderly patients with gastric cancer. Materials and Methods: The present study included patients aged over 75 years who underwent curative gastrectomy between January 1989 and December 2018. Clinicopathological data including the number of retrieved and metastatic LNs were collected and the LNR values were obtained (LNR = the number of metastatic LNs/the number of retrieved LNs). Eleven LNR groups with intervals of 0.1 were divided into four stages based on the inflection points at which the hazard ratio (HR) increased. Survival analysis was performed to evaluate the prognostic value of the LNR. Results: The four LNR stages included LNR0 (n=364), LNR1 (n=128), LNR2 (n=103), and LNR3 (n=10). In the multivariate analysis, both N staging and LNR staging exhibited significant prognostic values for predicting survival outcomes. However, the incremental change in the hazard ratio (HR) between consecutive stages was greater for the LNR staging than for the N staging (HRs: 1.607, 2.758, and 3.675 for N staging; 1.583, 3.514, and 10.261 for LNR staging). Conclusions: LNR staging is more useful than N staging in predicting the prognosis in elderly patients with gastric cancer and may be used as a complement or alternative to N staging.

The Influence of Human Capital on GDP Dynamics: Modeling in the COVID-19 Conditions

  • Derii, Zhanna;Zosymenko, Tetiana;Shaposhnykov, Kostiantyn;Tochylina, Yuliia;Krylov, Denys;Papaika, Oleksandr
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.67-76
    • /
    • 2022
  • COVID-19 struck labor markets around the world, exposing and exacerbating the gender inequalities within the human capital structure. The last, in its turn, jeopardizes the return of the national economies to the growth trajectory undermined by pandemic impact. The authors assume that COVID-19 disproportionately affected the employment rates of women and men, which led to increased gender inequality in the labor market, which, in turn, affected GDP growth rates in the EU. To prove this hypothesis two research questions are discovered: 1) whether there was a different correlation between the number of COVID-19 cases in the EU and indicators of the labor market for women and men; and 2) whether there was a link between the growth of gender inequality in the EU labor market and the GDP dynamics in these countries. The analysis of the correlation between the number of cases of COVID-19 and indicators of the labor market in the EU revealed faster growth of women's unemployment rates compared to men's ones as the COVID-19 incidence unfolded. Multiple linear regression and factor analysis have been used to investigate the influence of gender inequality in the labor market on GDP dynamics. Despite the methodological limitations, the proposed model is both a sound argument and an analytical basis in favor of gender-responsive economic recovery backed by the systematic and consistent gender equality policy of a government.

Seismic Vulnerabilities of a Multi-Span Continuous Bridge Considering the Nonlinearity of the Soil (지반 비선형성을 고려한 다경간 연속교의 지진취약도)

  • Sun, Chang-Ho;Lee, Jong-Seok;Kim, Ick-Hyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.59-68
    • /
    • 2010
  • Seismic performances of existing structures should be assessed with more accuracy for cost-effective retrofits. Existing bridges are assessed by the current guidelines in which a simple method has been adapted considering the technical level of engineers of the historical time of construction. Recently many probabilistic approaches have been performed to reflect the uncertainties of seismic input motions. Structures are modeled frequently with the neglection of soil foundations or modeled occasionally with elastic soil spring elements to consider the effect of the soil on the structural response. However, soil also shows nonlinearity under seismic events, so this characteristic should be reflected in order to obtain a more accurate assessment. In this study, a 6-span continuous bridge has been analyzed under various seismic events, in which the soil was represented by equivalent linear spring elements having different properties according to the intensities of the input motions experienced. The seismic vulnerabilities with respect to the failure of piers and the dropping of the super-structure were evaluated on the basis of the analysis results.

Analysis of the characteristics of polymer multi-layers by using quartz crystals (수정진동자를 이용한 고분자 누적막의 특성분석)

  • Kim, Ki-Young;Kim, Jong-Min;Kwon, Young-Soo;Lee, Burm-Jong;Chang, Yong-Keun;Kim, Jong-Deuk;Chang, Sang-Mok
    • Journal of Sensor Science and Technology
    • /
    • v.3 no.2
    • /
    • pp.3-10
    • /
    • 1994
  • The use of preformed polymers and their cross-linking has been attempted in order to improve the intrinsic fragility of monolayers and Langmuir-Blodgett(LB) films. The evaluation of the characteristics of the LB multi-layer by using an AT-cut quartz crystal has been also attempted. This study reveals that the polyether pendants of 2C18VE3 lie at the air-water interface at low surface pressures and are forced down into the subphase when the monolayers are compressed. This characteristic behavoir of the pendant polyethers is very clear on aqueous poly allyl amine(PAA) and is also observeable on saturated aqueous NaCl and $CaCl_{2}$. And the characteristics of LB multi-layers could be evaluated by using AT-cut quartz crystal in situ.

  • PDF

Retrofit Prioritization of Highway Network considering Seismic Risk of System (지진 위험도를 고려한 도로 교통망의 내진보강 우선순위 결정)

  • Na, Ung-Jin;Park, Tae-Won;Shinozuka, Masanobu
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.6
    • /
    • pp.47-53
    • /
    • 2008
  • This research focuses on the issue of seismic retrofit prioritization based on the Caltrans' highway network serving Los Angeles and Orange counties. Retrofit prioritization is one of most important problems in earthquake engineering, and it is a problem that most decision makers face in the process of resource allocation. This study demonstrates the methods of prioritized resource allocation in the process of retrofitting a regional highway network. For the criteria of a retrofit ranking, seismic vulnerability and the importance of network link are first introduced. Subsequently, link-based seismic retrofit cases are simulated, investigating the effects of the seismic retrofit in terms of seismic performance, such as driver's delay. In this study, probabilistic scenario earthquakes are used to perform a probabilistic seismic risk analysis. The results show that the retrofit prioritization can be differently defined and ranked depending on the stakeholders. This study provides general guidelines for prioritization strategy for the effective retrofitting of a highway network system.

Collapse Vulnerability and Fragility Analysis of Substandard RC Bridges Rehabilitated with Different Repair Jackets Under Post-mainshock Cascading Events

  • Fakharifar, Mostafa;Chen, Genda;Dalvand, Ahmad;Shamsabadi, Anoosh
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.3
    • /
    • pp.345-367
    • /
    • 2015
  • Past earthquakes have signaled the increased collapse vulnerability of mainshock-damaged bridge piers and urgent need of repair interventions prior to subsequent cascading hazard events, such as aftershocks, triggered by the mainshock (MS). The overarching goal of this study is to quantify the collapse vulnerability of mainshock-damaged substandard RC bridge piers rehabilitated with different repair jackets (FRP, conventional thick steel and hybrid jacket) under aftershock (AS) attacks of various intensities. The efficacy of repair jackets on post-MS resilience of repaired bridges is quantified for a prototype two-span single-column bridge bent with lap-splice deficiency at column-footing interface. Extensive number of incremental dynamic time history analyses on numerical finite element bridge models with deteriorating properties under back-to-back MS-AS sequences were utilized to evaluate the efficacy of different repair jackets on the post-repair behavior of RC bridges subjected to AS attacks. Results indicate the dramatic impact of repair jacket application on post-MS resilience of damaged bridge piers-up to 45.5 % increase of structural collapse capacity-subjected to aftershocks of multiple intensities. Besides, the efficacy of repair jackets is found to be proportionate to the intensity of AS attacks. Moreover, the steel jacket exhibited to be the most vulnerable repair intervention compared to CFRP, irrespective of the seismic sequence (severe MS-severe or moderate AS) or earthquake type (near-fault or far-fault).

Association of the TREML2 and HTR1E Genetic Polymorphisms with Osteoporosis

  • Jung, Dongju;Jin, Hyun-Seok
    • Biomedical Science Letters
    • /
    • v.21 no.4
    • /
    • pp.181-187
    • /
    • 2015
  • Osteoporosis is one of the diseases caused by accumulation of effects from complex interactions between genetic and environmental factors. Aging is the major cause for osteoporosis, which normally increases skeletal fragility and bone fracture especially among the elder. "Omics" refers to a specialized research field dealing with high-throughput biological data, such as genomics, transcriptomics, proteomics or metabolomics. Integration of data from multi-omics has been approved to be a powerful strategy to colligate biological phenomenon with multiple aspects. Actually, integrative analyses of "omics" datasets were used to present pathogenesis of specific diseases or casual biomarkers including susceptible genes. In this study, we evaluated the proposed relationship of novel susceptible genes (TREML2, HTR1E, and GLO1) with osteoporosis, which genes were obtained using multi-omics integration analyses. To this end, SNPs of the susceptible genes in the Korean female cohort were analyzed. As a result, one SNP of HTR1E and five SNPs of TREML2 were identified to associate with osteoporosis. The highest significant SNP was $rs6938076^*$ of TREML2 (OR=0.63, CI: 0.45~0.89, recessive P=0.009). Consequently, the susceptible genes identified through the multi-omics analyses were confirmed to have association with osteoporosis. Therefore, multi-omics analysis might be a powerful tool to find new genes associated with a disease. We further identified that TREML2 has more associated with osteoporosis in females than did HTR1E.

Quantifying the seismic resilience of two tall buildings designed using Chinese and US Codes

  • Tian, Yuan;Lu, Xiao;Lu, Xinzheng;Li, Mengke;Guan, Hong
    • Earthquakes and Structures
    • /
    • v.11 no.6
    • /
    • pp.925-942
    • /
    • 2016
  • With ongoing development of earthquake engineering research and the lessons learnt from a series of strong earthquakes, the seismic design concept of "resilience" has received much attention. Resilience describes the capability of a structure or a city to recover rapidly after earthquakes or other disasters. As one of the main features of urban constructions, tall buildings have greater impact on the sustainability and resilience of major cities. Therefore, it is important and timely to quantify their seismic resilience. In this work, a quantitative comparison of the seismic resilience of two tall buildings designed according to the Chinese and US seismic design codes was conducted. The prototype building, originally designed according to the US code as part of the Tall Building Initiative (TBI) Project, was redesigned in this work according to the Chinese codes under the same design conditions. Two refined nonlinear finite element (FE) models were established for both cases and their seismic responses were evaluated at different earthquake intensities, including the service level earthquake (SLE), the design-based earthquake (DBE) and the maximum considered earthquake (MCE). In addition, the collapse fragility functions of these two building models were established through incremental dynamic analysis (IDA). Based on the numerical results, the seismic resilience of both models was quantified and compared using the new-generation seismic performance assessment method proposed by FEMA P-58. The outcomes of this study indicate that the seismic resilience of the building according to the Chinese design is slightly better than that according to the US design. The conclusions drawn from this research are expected to guide further in-depth studies on improving the seismic resilience of tall buildings.

Development of a New Lumped-Mass Stick Model using the Eigen-Properties of Structures (구조물의 동적 고유특성을 이용한 새로운 집중질량모델 개발)

  • Roh, Hwa-Sung;Youn, Ji-Man;Lee, Hu-Seok;Lee, Jong-Seh
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.4
    • /
    • pp.19-26
    • /
    • 2012
  • For a seismic design or performance evaluation of a structure, an experimental investigation on a scale model of the structure or numerical analysis based on the finite element model is considered. Regarding the numerical analysis, a three-dimensional finite element analysis is performed if a high accuracy of the results is required, while a sensitivity or fragility analysis which uses huge seismic ground motions leads to the use of a lumped-mass stick model. The conventional modeling technique to build the lumped-mass stick model calculates the amount of the lumped mass by considering the geometric shape of the structure, like a tributary area. However, the eigenvalues of the conventional model obtained through such a calculation are normally not the same as those of the actual structure. In order to overcome such a deficiency, in this study, a new lumped mass stick model is proposed. The model is named the "frequency adaptive-lumped-mass stick model." It provides the same eigenvalues and similar dynamic responses as the actual structure. A non-prismatic column is considered as an example, and its natural frequencies as well as the dynamic performance of the new lumped model are compared to those of the full-finite element model. To investigate the damping effect on the new model, 1% to 5% of the critical damping ratio is applied to the model and the corresponding results are also compared to those of the finite element model.