• Title/Summary/Keyword: fractured surface

Search Result 370, Processing Time 0.027 seconds

BONDING OF RESIN INLAY TO GLASS-IONOMER BASE WITH VARIOUS TREATMENTS ON INLAY SURFACE (내표면 처리에 따른 레진 인레이와 글래스아이오노머 베이스간의 접착)

  • Jang, Byung-Sung;Kim, Sung-Kyo
    • Restorative Dentistry and Endodontics
    • /
    • v.25 no.3
    • /
    • pp.399-406
    • /
    • 2000
  • The effect of inlay surface treatment on bonding was investigated when resin inlay was bonded to resin-modified glass-ionomer base with resin cement. For the preparation of glass-ionomer base, resin-modified glass-ionomer cement (Fuji II LC, GC Co., Japan) was filled in class I cavities of 7mm in diameter and 2mm in depth made in plastic molds. Eighty eight resin inlay specimens were made with Charisma$^{(R)}$ (Kulzer, Germany) and then randomly assigned to the four different surface treatment conditions: Group I, $50{\mu}m$ aluminium oxide sandblasting and silane treatment ; Group II, silane treatment alone ; Group III, sandblasting alone, and Group IV (control), no surface treatment. After a dentin bonding agent with primer (One-Step$^{TM}$, Bisco Inc., IL., U.S.A.) was applied to bonding surface of resin inlay and base, resin inlay were cemented to glass-ionomer base with a resin cement (Choice$^{TM}$, Bisco Inc., IL., U.S.A.). Shear bond strengths of each specimens were measured using Instron universal testing machine (4202 Instron, lnstron Co., U.S.A.) and fractured surfaces were examined under the stereoscope. Statistical analysis was done with one-way ANOVA and Dunkan's multiple range test. The results were as follows: 1. Sandblasting and silane treatment provided the greatest bond strength(10.56${\pm}$1.95 MPa), and showed a significantly greater bond strength than sandblasting alone or no treatment (p<0.05). 2. Silane treatment provided a significantly greater bond strength(9.77${\pm}$2.04 MPa) than sandblasting alone or no treatment (p<0.05). However, there was no significant difference in bond strength between sandblasting treatment and silane one (p>0.05). 3. Sandblasting alone provided no significant difference in bond strength from no treatment (p>0.05). 4. Stereoscopic examination of fractured surface showed that sandblasting and silane treatment or silane treatment alone had more cohesive failure mode than adhesive failure mode. 5. In relationship between shear bond strength and failure mode, cohesive failure occurred more frequently as bond strength increased.

  • PDF

EFFECT OF BENZALKONIUM CHLORIDE ON DENTIN BONDING WITH NTG-GMA/BPDM AND DSDM SYSTEM (Benzalkonium Chloride가 NTG-GMA/BPDM계 및 DSDM계 상아질접착제의 접착성능에 미치는 영향)

  • Shin, Il;Park, Jin-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.699-720
    • /
    • 1995
  • This study was conducted to evaluate the effect of benzalkonium chloride solution as a wetting agent instead of water on dentin bonding with NTG-GMA/BPDM system (All-bond 2, Bisco.) and DSDM system (Aelitebond, Bisco.). Benzalkonium chloride solution is a chemical disinfectant widely used in medical and dental clinics for preoperative preparation of skin and mucosa due to its strong effect of cationic surface active detergent. Eighty freshly extracted bovine lower incisor were grinded labially to expose flat dentin surface, and then were acid-etched with 10 % phosphoric acid for 15 second, water-rinsed, and dried for 10 second with air syringe. The specimens were randomly divided into 8 groups of 10 teeth. The specimens of control group were remoistured with water and the specimens of experimental groups were remoistured with 0.1 %, 0.5 %, and 1.0 % benzalkonium chloride solution respectively. And then, the Aelitefil composite resin was bonded to the pretreated surface of the specimens by use of All-bond 2 dentin bonding system or Aelitebond dentin bonding system in equal number of the specimens. The bonded specimens were stored in $37^{\circ}C$ distilled water for 24 hours, then the tensile bond strength was measured, the mode of failure was observed, the fractured dentin surface were examined under scanning electron microscopy, and FT-IR spectroscopy was taken for the purpose of investigating the changes of the dentin surface pretreated with benzal konium chloride solution followed by each primer of the dentin bonding systems. The results were as follows : In the group of bonding with NTG-GMA/BPDM dentin bonding agent(All-bond 2), higher tensile bond strength was only seen in the experimental group remoistured with 0.1 % benzal konium chloride solution than that in water-remoistured control group(p<0.05). In the group of bonding with DSDM dentin bonding agent (Aelitebond), no significant differences were seen between the control and each one of the experimental group(p<0.05). Higher tensile bond strength were seen in NTG-GMAIBPDM dentin bonding agent group than in DSDM dentin bonding agent group regardless of remoistur ization with benzal konium chloride solution. On the examination of failure mode, cohesive and mixed failure were predominantly seen in the group of bonding with NTG-GMAIBPDM dentin bonding agent, while adhesive failure was predominantly seen in the group of bonding with DSDM dentin bonding agent. On SEM examination of fractured surfaces, no differences of findings of primed dentin surface between the groups with and without remoisturization with benzal konium chloride solution. FT-IR spectroscopy taken from the control and the experimental group reve::.led that some higher absorbance derived from the primers binding to dentin surface was seen at the group pretreated with 0.1 % benzal konium chloride solution than at the control group of remoisturizing with water.

  • PDF

An Experimental Study on Mode ll Fracture Toughness Determination of Rock (암석의 전단 파괴인성 측정에 관한 실험적 연구)

  • 윤정석;전석원
    • Tunnel and Underground Space
    • /
    • v.13 no.1
    • /
    • pp.64-75
    • /
    • 2003
  • This study presents a newly suggested test method of Mode II fracture toughness measurement called "Punch Through Shear Test" which was originally proposed by Backers and Stephansson in 2001. The purpose of this study is to check the validity of the suggested testing method by performing Mode II fracture toughness tests for Daejeon Granite. In addition, the optimal specimen geometry for the testing and the relation between Mode II fracture toughness and confining pressure were also investigated. Fractured surface was observed to be very smooth with lots of rock debris which came off fracture surface which obviously implies that the surface was sheared off. This confirms that Mode II fracturing actually occurred. In addition, numerical analyses including continuum analysis, particle flow code analysis and crack propagation simulations were performed. Results of these numerical analyses indicated that the cracks occurred in the specimen were predominantly in Mode II and these cracks led to failure of the test specimen. From this investigation, it can be concluded that the newly suggested "Punch Through Shear Test" method provides a reliable means of determining the Mode II fracture toughness. fracture toughness.

Effect of Porosity on the High-Cycle Fatigue Behavior of Al-Si-Mg Casting Alloy (Al-Si-Mg계 주조용 알루미늄 합금의 고주기 피로 거동에 미치는 기공의 영향)

  • Lee, Young-Jae;Kang, Won-Guk;Euh, Kwang-Jun;Cho, Kyu-Sang;Lee, Kee-Ahn
    • Transactions of Materials Processing
    • /
    • v.18 no.4
    • /
    • pp.296-303
    • /
    • 2009
  • The effect of porosity on the high-cycle fatigue properties of Al-Si-Mg casting aluminum alloys was investigated in this study. Microstructure examination, tensile and high-cycle fatigue test were conducted on both Al-Si-Mg casted (F) and heat-treated (T6) conditions. Porosity characteristics on the fracture surfaces of fatigue-tested samples were examined using SEM and image analysis. The microstructure observation results showed that eutectic Si particles were homogeneously dispersed in the matrix of the Al-Si-Mg casting alloys, but there were porosities formed as cast defects. The high-cycle fatigue results indicated that the fatigue strength of the 356-T6 alloy was higher than that of the 356-F alloys because of the significant reduction in volume fraction of pores by heat treatment. The SEM fractography results showed that porosity affected detrimental effect on the fatigue life: 80% of all tested samples fractured as a result of porosity which acted as the main crack initiation site. It was found that fatigue life decreased as the size of the surface pore increased. A comparison was made between surface pore and inner pore for its effect on the fatigue behavior. The results showed that the fatigue strength with the inner pores was higher than that of the surface pore.

A SCANNING ELECTRON MICROSCOPIC STUDY ON THE CHANCES OF REPARATIVE DENTIN FORMATION BY THE GLASS IONOMER CEMENT IN CATS (Glass Ionomer시멘트에 의한 상아질구조변화에 관한 주사전자현미경적 연구)

  • Park, S.K.;Woo, Y.H.;Choi, D.K.;Choi, B.B.;Park, N.S.
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.25 no.1
    • /
    • pp.227-242
    • /
    • 1987
  • This study was designed to investigate the pulpal effects of the glass ionomer cement. (Lining cement, G-C Co. Japan) For this purpose, 10 cats were selected, and Class V cavities were prepared on canines of the cats. One experimental group was filled with glass ionomer cement and the other group was filled with zinc phosphate cement . (G-C Co, Japan) The animals of the experimental and control group were sacrificed at 1,2,3,4,6, weeks after the experiment. For comparison of reparative dentin formation pattern in direction of the pulpal and fractured lateral surface, each of them was observed with scanning electron microscope. The findings led to the following conclusions; 1. Reparative dentin of the glass ionomer cement and zinc phosphate cement filling groups were formed on the internal surface of dentin as the shape of hemispherical and spherical with a rough surface. 2. Some of reparative dentin of the glass ionomer cement filling group was started to form at 1 week after experiment, and at 6 weeks after experiment, it had been increased gradually in number and size. 3. Reparative dentin of zinc phosphate cement filling group was formed vigorously, however, gradually was decreased in number and size, and disappeared at 6 weeks after experiment. 4. During the formation of reparative dentin, peritubular dentins were indistinguishable. 5. The diameter of dentinal tubules of reparative dentin has been decreased, during the reparative dentin formed, and it became very irregularly at 6 weeks after experiment.

  • PDF

A STUDY ON THE BOND STRENGTH BETWEEN REUSED DENTAL ALLOYS AND PORCELAIN (치과 도재용 금속의 재사용에 따른 금속과 도재간의 결합 강도에 관한 연구)

  • Kim, In;Yang, Hong-So
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.31 no.2
    • /
    • pp.181-190
    • /
    • 1993
  • The purpose of this study was to evaluate the effect of shear bond strength between various percentage of reused dental ceramic alloys and porcelain. One hundred specimens were made of one semiprecious alloy and three nonprecious alloys. Each alloy group was subdevided into five groups according to the additional precentage of new alloy. Group I specimens were made of 100% new alloy and served as the control of the investigation. Group II specimens were made of once-cast alloy with 75% new alloy. Group III specimens were made of once-cast alloy with 50% new alloy. Group IV specimens were made of once-cast alloy with 25% new alloy. Group V specimens were made of 100% recast alloy. Five specimens were made for each group of the alloy combinations. The test specimens were prepared by firing porcelain doughnuts on the alloy rod surface, and invested in dental stone. Bond strengths were measured by Instron universal testing machine at a crosshead speed of 0.5mm/min. The fractured surface of metal specimens were examined under the scanning electron microscope. The obtained results were as follows : 1. The shear bond strength of Albabond showed no significant difference between control group and reused alloy group. 2. The shear bond strength of reused alloy groups of nonprecious alloys were lower than that of control groups. 3. The shear bond strength between porcelain and metal in semiprecious alloy was higher than in nonprecious alloys 4. In nonprecious alloys. Rexillium III showed the highest bond strength value and Excelalloy showed the lowest shear bond strength value. 5. Regardless of the type of alloys and additional proportion of new alloys, scanning electron microscope photographs of the fracture surface between alloy and porcelain revealed simillar semiprecious alloy and nonprecious alloys.

  • PDF

AN EFFECT OF ND : YAG LASER ON THE BONDING STRENGTH OF COMPOSITE RESIN TO DENTIN AND PORCELAIN (Nd : YAG 레이저가 상아질 및 도재와 복합레진간의 결합강도에 미치는 영향)

  • Woo, Gum-Jin;Yang, Hong-So
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.35 no.2
    • /
    • pp.385-399
    • /
    • 1997
  • The purpose of this experiment was to determine the effects of etching with a Nd : YAG Laser on dentin, or porcelain surface on the bond strength with composite resin. The dentin specimens were devided into the following 4 groups. D1 : No treatment D2 : Etched with 10% phosphoric acid D3 : Laser etchded with 1W, 20PPs D4 : Laser etched with 2W, 20PPS The procelain specimens were devided into the following 4 groups. P1 : diamond roughened P2 : etched with HF acid P3 : Laser etched with 2W, 20PPS P4 : Laser etched with 3W, 20PPS All specimens were veneered with resin. One half of the specimens were stored in $37^{\circ}C$ water for one day and the other half were thermocycled 1000 times at temperature of $5^{\circ}C\;to\;55^{\circ}C$ at 20 seconds intervals. After that, the bonding strength of composite resin to the dentin and porcelain was measured. The surface treated state and fractured state were observed with SEM. The following results were obtained. 1. In the dentin specimens, the bond strength of group D2 was highter than that of groups D1 and D3 in the case of the specimens stored in $37^{\circ}C$ water for one day, there was a statistically significant difference between group D2 and D1, D3 (P<0.05). The bonding strength of the specimens that were thermocycled decreased in the following order : group D2,D4,D3 and then D1. 2. In the porcelain specimens, the bonding strength of groups P1,P2 were higher than that of group P3 in the case of the specimens stored in $37^{\circ}C$ water for one day (P<0.05). The bonding strength of the specimens of being thermocycled decreased in the following order : group P2,P1,P4 and then P3. 3. The groups of high bond strength had a rougher surface and a high level of microporosity with SEM findings.

  • PDF

Effect of Porosity on the High-Cycle Fatigue Behavior of Al-Si-Mg Casting Alloy (Al-Si-Mg계 주조용 알루미늄 합금의 고주기 피로 거동에 미치는 기공의 영향)

  • Lee, Young-Jae;Kang, Won-Guk;Euh, Kwang-Jun;Cho, Kyu-Sang;Lee, Kee-Ahn
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.350-352
    • /
    • 2009
  • The effect of porosity on the high-cycle fatigue properties of Al-Si-Mg casting aluminum alloys was investigated in this study. Microstructure examination, tensile and high-cycle fatigue test were conducted on both Al-Si-Mg casted (F) and heat-treated (T6) conditions. Porosity characteristics on the fracture surfaces of fatigue-tested samples were examined using SEM and image analysis. The microstructure observation results showed that eutectic Si particles were homogeneously dispersed in the matrix of the Al-Si-Mg casting alloys, but there were porosities formed as cast defects. The high-cycle fatigue results indicated that the fatigue strength of the 356-T6 alloy was higher than that of the 356-F alloys because of the significant reduction in volume fraction of pores by heat treatment. The SEM fractography results showed that porosity affected detrimental effect on the fatigue life: 80% of all tested samples fractured as a result of porosity which acted as the main crack initiation site. It was found that fatigue life decreased as the size of the surface pore increased. A comparison was made between surface pore and inner pore fur its effect on the fatigue behavior. The results showed that the fatigue strength with the inner pores was higher than that of the surface pore.

  • PDF

A SEM STUDY OF RADIATION EFFECTS ON THE RAT MOLAR ENAMEL FORMATION (방사선조사가 백서 구치 법랑질형성에 미치는 영향에 관한 주사전자현미경적 연구)

  • Lee Kyung-Ho;Park Tae-Won
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.25 no.2
    • /
    • pp.409-422
    • /
    • 1995
  • The purpose of this study was to investigate the effects of radiation on the formation of rat molar enamel at the developmental stage. The experimental animals were divided into five groups and were irradiated single dose of 396cGy ; 1 st group on 14th day of gestation, 2nd group on 19th day of gestation, 3rd group on 3 days after birth, 4th group on 8 days after birth, 5th group on 28 days after birth. The control and 1, 2, 3, and 4th experimental groups were sacrificed on 2, 4, and 6 weeks and the 5th groups were sacrificed on 1 day and 2 weeks after irradiation. Distal 1/2 and occlusal 1/3 enamel surface of lingual side of lingual cusp, and fractured surface of lingual side of lingual cusp in a longitudinal direction of the mandibular first molar were examined using scanning electron microscope. The following results were obtained. 1. The roughness of enamel surface and enamel hypoplasia were increased in a sequence of 4th, 1st, 2nd, and 3rd experimental group, and the enamel cracks were increased in the 1st and 2nd experimental group. 2. The pattern of enamel hypoplasia had a network form on the 1st and 2nd experimental group, and appeared a linear shape on the 3rd experimental group, and then the crator-like enamel defects were observed in all experimental groups (especially 1st and 2nd experimental group) except 5th. 3. Dentinoenamel junction showed the clear-cut and straight appearance except 5th experimental group. 4. There was no significant difference between 5th experimental and control group.

  • PDF

Standardization of Bending Impact Test Methods of Sn-Ag-Cu Lead Free Solder Ball (Sn-Ag-Cu계 무연 솔더볼 접합부의 굽힘충격 시험방법 표준화)

  • Jang, Im-Nam;Park, Jai-Hyun;Ahn, Yong-Sik
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.17 no.1
    • /
    • pp.55-61
    • /
    • 2010
  • An impact bending test method was used to evaluate the reliability for the solder joint of lead-free solder ball. In order to standardize the test method, the four point impact bending test was applied under the conditions of various frequencies and amounts of +/-amplitude respectively. Effects on the results were analysed. The optimum condition for impact bending test achieved in this study was the frequency of 10 Hz, and the amplitude of (+12/-1)~(+15/-1). 3 kinds of surface finishes Cu-OSP (Organic Solderability Preservative), ENIG (Electroless Nickel Immersion Gold), and ENEPIG (Electroless Nickel, Electroless Palladium, Immersion Gold) were used. Fracture surface showed that cracks were initiated and fractured along the intermetallic layer in the case of surface finishes of Cu-OSP and ENIG, while in the case of ENEPIG the cracks were initiated and propagated in the solder region.