• Title/Summary/Keyword: fracture zone

Search Result 759, Processing Time 0.025 seconds

The Effect of Paint Baking on the Strength and Failure of Spot Welds for Advanced High Strength Steels (고강도 강판 저항 점용접부 강도 및 파단에 미치는 Paint Baking의 영향)

  • Choi, Chul Young;Lee, Dongyun;Kim, In-Bae;Kim, Yangdo;Park, Yeong-Do
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.12
    • /
    • pp.967-976
    • /
    • 2011
  • Conventional fracture tests of resistance spot welds have been performed without consideration of the paint baking process in the automobile manufacturing line. The aim of this paper is to investigate the effect of the paint baking process on load carrying capacity and fracture mode for resistance spot welded 590 dual phase (DP), 780DP, 980DP, 590 transformation in duced plasticity (TRIP), 780TRIP and 1180 complex phase (CP) steels. With paint baking after resistance spot welding, the l-shape tensile test (LTT) and nano-indentation test were conducted on the as-welded and paint baked samples. Paint baking increased the load-carrying capacity of the resistance spot welded samples and improved the fracture appearance from partial interfacial fracture (PIF) to button fracture (BF). Improvement in fracture appearance after LTT is observed on weldments of 780 MPa grade TRIP steels, especially in the low welding current range with paint baking conditions. The higher carbon contents (or carbon equivalent) are attributed to the low weldability of the resistance spot welding of high strength steels. Improvement of the fracture mode and load carrying ability has been achieved with ferrite hardening and carbide formation during the paint baking process. The average nano-indentation hardness profile for each weld zone shows hardening of the base metal and softening of the heat affected zone (HAZ) and the weld metal, which proves that microstructural changes occur during low temperature heat treatment.

A study on deformation and strength of polymer composites using automobiles (자동차용 폴리머 복합재료의 변형과 강도에 관한 연구)

  • Shin, Je-Hoon;Lim, Jae-Kyoo;Park, Han-Ju
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.238-243
    • /
    • 2000
  • The effect of the temperature, the fatigue and the test speed on DEN(double edged notch) specimen which was made by the pp-rubber composites during fracture was stuied. DEN specimen was made on PP-rubber composites through the injection molding. With increasing temperature the fracture strength is linearly decrease and the fracture energy is first increase by $0^{\circ}C$ and after that decrease. In the same temperature the fracture strength during increasing the notch radius is hardly increase. The fracture behaviour at low and high test speed is different entirely. At high test speed plastic region is small and fracture behaviour was seen to brittle fracture tendency. The deformation mechanism of polypropylene-rubber composites during fracture was studied by SEM fractography. A strong plastic deformation of the matrix material ahead of the notch/crack occured. The deformation seem to be enhanced by a thermal blunting of the notch/crack.

  • PDF

Experimental and numerical analysis of mixed mode I/III fracture of sandstone using three-point bending specimens

  • Li, Yifan;Dong, Shiming;Pavier, Martyn J.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.6
    • /
    • pp.725-736
    • /
    • 2020
  • In this work the mixed mode I/III fracture of sandstone has been studied experimentally and numerically. The experimental work used three-point bending specimens containing pre-existing cracks, machined at various inclination angles so as to achieve varying proportions of mode I to mode III loading. Dimensionless stress intensity factors were calculated using the extended finite element method (XFEM) for and compared with existing results from literature calculated using conventional finite element method. A total of 28 samples were used to conduct the fracture test with 4 specimens for each of 7 different inclination angles. The fracture load and the geometry of the fracture surface were obtained for different mode mixities. Prediction of the fracture loads and the geometry of the fracture surface were made using XFEM coupled with a cohesive zone model (CZM) and showed a good comparison with the experimental results.

A Study on the Genesis of Fluorite Deposits of South Korea (남한(南韓)의 형석광상(螢石鑛床)의 성인(成因)에 관(關)한 연구(硏究))

  • Chi, Jeong Mahn
    • Economic and Environmental Geology
    • /
    • v.8 no.1
    • /
    • pp.25-56
    • /
    • 1975
  • Most fluorite deposits of South Korea are distributed in three metallogenic zones namly as: Hwacheon, Hwangangni and Geumsan metallogenic zones. Fluorite deposits of each zone show The characteristic features owing to the geological setting, the structural patterns and their forming processes. deposits of the Hwacheon metallogenic zone are wholly fissure filling hydrothermal veins emThe bedded in shear fractures of the granite gneiss or schists of Precambrian age or in the cooling fractures of the granite and acidic hypabyssal rocks which are assumed to be a differentiated sister rock of the granite. Localization of most fluorite veins of the region is structurally controlled by NW and EW fracture systems and genetically related to the granite intrusion which ascertained as motivating rock of the fluorite mineralization. Fluorites are in most cases accompanied by quartz, chalcedony mainly and rarely agate, calcite, barite and sulphide base metals in some localities. The deposits of the Hwangangni metallogenic zone were formed at the last stage of hydrothermal polymineralization of W, Mo, Cu, Pb, Zn. The majority of the fluorite ore bodies were originated from replacement in limestone beds of Great Limestone Series or in calcareous interbeds of metasediments, whereas some cavity-filling ore bodies were embedded in phyllites and schists of the Ockcheon system and along the fissures in the replaced beds which were originated by volume decrease. The localization of fluorite deposits in this region is genetically related to the Moongyong granite which has been dated as middle Cretaceous, and controlled structurally by the $N20^{\circ}{\sim}50^{\circ}W$ extension fracture system or axial planes of folds, and by faults of NE direction that acted as paths of ore solution. The deposits of the Geumsan metallogenic zone are seemed to be formed through the similar process as that of Hwangangni metallogenic zone, but characteristic distinctions are in that they are more prevailing fracture filling veins and large number of the deposits are localized in roof-pendants or xenolithes of limestone in granites and porphyries. Igneous rocks that presumably motivated the mineraltzation are middle Cretaceous Geumsan granite and porphyries. Metallogenic epoch of the fluorite mineralization of South Korea are puesumably limited in early-middle Cretaceous. Studies of the fluid inclusions in fluorites of the region reveal that the homogenization temperature of the fluorite deposits are as follows: Hwacheon metallogenic zone : $95^{\circ}C{\sim}165^{\circ}C$; Hwangangni metallogenic zone : $97^{\circ}C{\sim}235^{\circ}C$; Geumsan metallogenic zone : $93^{\circ}C{\sim}236^{\circ}C$. Judging from the above results, the deposits of the Hwancheon region were formed at the epithermal stage, and those in the Hwangangni and Geumsan regions, were deposited at epithermal stage preceded by mesothermal mineralization of small scale in which some sulphide minerals were deposited. The analytical data of minor elements in the fluorites reveal that ore solutions of Hwangangni metallogenic zone seemed to be emanated in more acidic stage of magma differentiation than Hwacheon metallogenic zone did.

  • PDF

Outcome of Conservative Treatment of the Zone I, II 5th Metatarsal Base Fracture under Early Weight-Bearing (제5 중족골 제1, 2 구역 골절의 조기 체중부하의 비수술적 치료 결과)

  • Gwak, Heui-Chul;Park, Dae-Hyun;Kim, Jung-Han;Lee, Chang-Rack;Kwon, Yong-Uk;Kim, Dong-Seok
    • Journal of the Korean Orthopaedic Association
    • /
    • v.56 no.2
    • /
    • pp.150-156
    • /
    • 2021
  • Purpose: To determine how the location, displacement, intra-articular involvement, comminution of a 5th metatarsal base fracture affect results of early weight-bearing treatment. Materials and Methods: From January 2013 to July 2017, 34 cases of 34 patients diagnosed with a fracture of the zone I and II 5th metatarsal base were enrolled. The mean follow-up period was 13 months (6-15 months). One patient was excluded as a refracture during the follow-up period, and 33 patients underwent conservative treatment. Anteroposterior, lateral, and simple oblique radiography and computed tomography of the foot were performed to evaluate the location and displacement of the fracture, the degree of joint involvement, and comminution. In all 33 patients, a short leg cast or boot brace was selected immediately after the injury, tolerable weight bearing was allowed. If the pain disappeared, full weight bearing was performed after wearing a plain shoe or postoperative shoe. As a clinical result, the American Orthopedic Foot and Ankle Society (AOFAS) score was evaluated at the final follow-up. During outpatient follow-up, a simple radiograph of the foot was taken to confirm the time of radiological bone union and return to work. Results: Nine males and 24 females, with an average age of 48.7 years, were enrolled in the study. Twenty-four patients had zone I fractures, and nine patients had zone II fractures. Twenty-two out of 33 patients had a fracture displacement of 2 mm or more. Nine and five patients had joint involvement and comminution, respectively. There was a statistically significant return to work from zone I to zone II. The AOFAS score was excellent at the final follow-up and there was no significant difference. When classifying and comparing the degree of fracture displacement, joint involvement, and comminution, there were no significant differences in the radiological union time and return to work. In all cases, satisfactory results were obtained at the final follow-up. Conclusion: Satisfactory clinical results can be obtained by allowing early weight-bearing regardless of the fracture location, displacement, joint involvement, or comminution in zone I and II 5th metatarsal base fractures.

Microstructure and Mechanical Properties of Gas Metal Arc Brazed Joint of DP Steel with Cu-Si Filler Metal (Cu-Si 삽입금속을 이용한 DP강의 MIG 아크 브레이징 접합부의 미세조직과 기계적 성질)

  • Cho, Wook-Je;Yoon, Tae-Jin;Kwak, Sung-Yun;Lee, Jae-Hyeong;Kang, Chung-Yun
    • Journal of Welding and Joining
    • /
    • v.34 no.5
    • /
    • pp.70-76
    • /
    • 2016
  • In this study, Microstructure and tensile properties in arc brazed joints of 1000MPa grade DP steel using Cu-Si insert metal were investigated. The fusion zone was composed of Cu phase which solidified a little Fe and Si. The former phase formed due to dilute the edge of base material by arc, although Fe was not solid solution in Cu at the room temperature. Cu3Si particles formed by crystallization at $1100^{\circ}C$ during faster cooling. After the tensile shear test, there are no differences between the brazed joint efficiencies. The maximum joint efficient was about 37% compared to strength of base metal. It is better than that of arc brazed joint of DP steel using Cu-Sn filler metal. Fracture position of all brazing conditions was in the fusion zone. Crack initiation occurred at three junction point which was a stress singularity point of upper sheet, lower sheet and the fusion zone. And then crack propagated across the fusion zone. The reason why the fracture occurred at fusion zone was that the hardness of fusion zone was lower than that of base material and heat affected zone. The correlation among maximum load and hardness of fusion zone and EST at fractured position was $R^2=0.9338$. Therefore, this means that hardness and EST can have great impact on maximum load.

Experimental Determination of Concrete Fracture Properties with Modified S-FPZ Model

  • Yon, Jung-Heum;Kim, Tai-Hoon
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.213-219
    • /
    • 2006
  • Modified singular fracture process zone(S-FPZ) model is proposed in this paper to determine a fracture criterion for continuous crack propagation in concrete. The investigated fracture properties of the proposed fracture model are strain energy release rate at a micro-crack tip and the relationship between crack closure stress(CCS) and crack opening displacement(COD) in the FPZ. The proposed model can simulate the actual fracture energy of experimental results fairly well. The results of the experimental data analysis show that specimen geometry and loading condition did not affect the CCS-COD relation. However, the strain energy release rate is a function of not only specimen geometry but also crack extension. The strain energy release rate remained constantly at the minimum value up to the crack extension of 25 mm, and then it increased linearly to the maximum value. The maximum fracture criterion occurred at the peak load for specimens of large size. The fracture criterion remained at the maximum value after the peak load. The variation of the fracture criterion is caused by micro-cracking and micro-crack localization. The fracture criterion of strain energy release rate can simply be the size effect of concrete fracture, and it can be used to quantify the micro-cracking and micro-crack localizing behavior of concrete.

A study on the Relations Between Fracture Strain and Fracture Resistance Curve of nuclear Pressure Vessel Steel (압력용기강의 파괴저항곡선의 파괴변형률에 관한 연구)

  • 임만배
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.1
    • /
    • pp.44-51
    • /
    • 2000
  • Safety and integrity are required for reactor pressure vessels because they are operated in high temperature. There are single specimen method multiple specimen method and load ratio analysis method which used as evaluation of safety and integrity for reactor pressure vessels. In this study the fracture resistance curve(J-R curve) elastic-plastic fracture toughness($J_{IC}$) and material tearing modulus ($T_{mat}$) of SA 508 class 3 alloy steel used as reactor pressure vessel steel are measured and evaluated at room temperature 20$0^{\circ}C$ and 30$0^{\circ}C$ according to unloading compliance method and load ration analysis method. And then the comparison with experimental $J_{IC}$ and theoretical$J_{IC}$ by local fracture strain is managed.

  • PDF

Effects of Friction Pressure on Bonding Strength and a Characteristic of Fracture in Friction Welding of Cu to Cu-W Sintered Alloy (동-텅스텐 소결합금(Cu-W)과 동(Cu)의 마찰용접에서 마찰압력이 접합강도와 파단특성에 미치는 영향)

  • 강성보;민택기
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.90-98
    • /
    • 1997
  • A copper-tungsten sintered alloy(Cu-W) has been friction welded to a tough pitch copper in order to investigate the effect of friction pressure on bonding strength and a charicteristic of fracture. The tensile strength of the friction welded joint was increased up to 90% of the Cu base metal under the condition of friction time 1.2 sec, friction pressure 4.5kgf/$\textrm{mm}^2$ and upset pressure 10kgf/$\textrm{mm}^2$. From the results of fracture surface analysis, the increase of friction pressure could remarkably decrease the force and the time to be normally acted on weld interface. The W particles which were included in the plastic zone of Cu side could induce fracture adjacent to the weld interface because their existance in Cu induces a decrease in available section area and an increase in notch effect. Therefore, the tensile strength was decreased at high friction pressure (6kgf/$\textrm{mm}^2$) because the destruction of W was increased by an increase in mechanical force and crack was formed at weld interface.

  • PDF

The Effect of Heat Input on Fracture Toughness(CTOD) in Submerged Arc Offshore Steel Weldments (해양구조용강재의 SA용접부에서 입열량이 파괴인성에 미치는 영향에 관한 실험적 연구)

  • Kang, Sung-Won;Kim, Myung-Hyun;Shin, Yong-Taek;Lee, Hae-Woo
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.41 no.6
    • /
    • pp.40-47
    • /
    • 2004
  • The influence of heat input on fracture toughness was investigated in SAW weldments, which were prepared at two different welding conditions in API 2W Gr.50 and EN10225 5420. By examining the fracture initiation point, refined areas(ICHAZ and SCHAZ) in weld metal was identified as local brittle zone, in which M-A constituents and coarsed grain size were observed. Impact values showed the most significant difference at root portion, and CTOD transition temperature was related with impact values obtained at root portion. Hardness values in refined area were less than columnar microstructure about 20 HV5.