• Title/Summary/Keyword: fracture tendency

Search Result 163, Processing Time 0.023 seconds

A Numerical Analysis on the Curved Bileaflet Mechanical Heart Valve (MHV): Leaflet Motion and Blood Flow in an Elastic Blood Vessel

  • Bang, Jin-Seok;Choi, Choeng-Ryul;Kim, Chang-Nyung
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.9
    • /
    • pp.1761-1772
    • /
    • 2005
  • In blood flow passing through the mechanical heart valve (MHV) and elastic blood vessel, hemolysis and platelet activation causing thrombus formation can be seen owing to the shear stress in the blood. Also, fracture and deformation of leaflets can be observed depending on the shape and material properties of the leaflets which is opened and closed in a cycle. Hence, comprehensive study is needed on the hemodynamics which is associated with the motion of leaflet and elastic blood vessel in terms of fluid-structure interaction. In this paper, a numerical analysis has been performed for a three-dimensional pulsatile blood flow associated with the elastic blood vessel and curved bileaflet for multiple cycles in light of fluid-structure interaction. From this analysis fluttering phenomenon and rebound of the leaflet have been observed and recirculation and regurgitation have been found in the flow fields of the blood. Also, the pressure distribution and the radial displacement of the elastic blood vessel have been obtained. The motion of the leaflet and flow fields of the blood have shown similar tendency compared with the previous experiments carried out in other studies. The present study can contribute to the design methodology for the curved bileaflet mechanical heart valve. Furthermore, the proposed fluid-structure interaction method will be effectively used in various fields where the interaction between fluid flow and structure are involved.

FE Simulation of Extrusion Process for Al Multi Cell Tube According to the Changes of the Porthole Shape (포트홀 형상 변화를 고려한 Al 멀티셀 튜브 압출공정 해석)

  • Lee Jung Min;Kim Dong Hwan;Ho Jo Hyung;Kim Byung Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.8 s.239
    • /
    • pp.1146-1152
    • /
    • 2005
  • Recently, multi cell tube which is used for a cooling system of automobiles is mainly manufactured by the conform extrusion but this method is inferior as compared with direct extrusion in productivity per the unit time and in the equipment investment. Therefore, it is essential for the conversion of direct extrusion with porthole die. The direct extrusion with porthole die can produce multi cell tube which has the competitive power in costs and qualities compared with the existing conform extrusion. This study is designed to evaluate metal flow, welding pressure, extrusion load, tendency of mandrel deflection that is affected by variation of porthole shape in porthole die. Estimation is carried out using finite element method under the non-steady state. Also this study was examined into the cause of mandrel fracture through investigating elastic deformation of mandrel during the extrusion.

A Study on the Fatigue Crack Growth Behavior of 9% Ni Steels (9% Ni강의 피로균열진전거동에 관한 연구)

  • Shim, Kyue-Taek;Kim, Jae-Hoon;Lee, Kwan-Hee;Ahn, Byung-Wook;Kim, Young-Kyun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.167-172
    • /
    • 2008
  • This study is to evaluate the fatigue crack growth characteristics for base metals and welded metal of 9% Ni steels. Since this material has very excellent fracture toughness at low temperature, it has been widely used for inner walls of LNG storage tank. These materials to compare fatigue crack growth (FCG) behaviour are treated with heat by the method of quenching and tempering (QT), and quenching, lamellarizing and tempering (QLT). FCG tests using compact temsion (CT) specimen under stress ratio R=0.1, 0.5, and constant load are carried out. K-increasing tests are conducted by the standard test method described in ASTM E 647. To investigate the effect of welded metal on the crack growth rate, the locations of notch tip were chosen at the center of welded metal and heat affected zone (HAZ). Form the results, FCG rate has almost same tendency according to stress ratio, base and welded metal, the locations of welded metal. FCG rate of welded metal is somewhat faster than base metal. Also scanning electron microscope (SEM) is used to observe the striation of the fractured surface after fatigue crack tests.

  • PDF

Serologic Markers of Excessive Callus formation in Traumatic Brain Injury Patient (다발성 환자에서 뇌 손상이 동반된 장골 골절 시 가골 형성 촉진예측을 위한 혈액검사에 대한 고찰)

  • Park, Hee-Gon;Kim, Yeon-Jun
    • Journal of Trauma and Injury
    • /
    • v.26 no.3
    • /
    • pp.81-88
    • /
    • 2013
  • Purpose: Among patients with multiple traumatic fractures, a tendency to form more callus exists in groups with multiple fractures combined with traumatic brain injury. This retrospective study evaluated the hematologic factors that might be useful to predict callus formation by comparing serologic tests and clinical and radiologic results in two groups. Methods: From January 2000 to December 2010, patients with femur shaft fractures were divided in two groups: one without traumatic brain injury (control group: 32 cases), and the other with traumatic brain injury (study group: 44 cases). We evaluated routine serologic exams and the amount of callus formation during the follow-up period. Results: Only the alkaline phosphatase level was statistically different between the two groups, not the White blood cell count, C-reactive protein, total calcium, and lactate dehydrogenase level. The amount of callus formation on the antero-posterior radiograph at the last follow up period was 74.9% in the study group and 42.1% in the control group. Then lateral radiograph showed 73.2% callus formation rate in the study group and 31.8% in the control group. Conclusion: In routine serologic exams, the two groups had no significant differences, except for the alkaline phosphatase level. The group with traumatic brain injury had much more callus formation, but there was no reliable factor to predict callus formation on the routine serologic exam.

Effects of Tungsten Addition on Tensile Properties of a Refractory Nb-l8Si-l0Ti-l0Mo-χW (χ=0, 5, 10 and 15 mot.%) In-situ Composites at 1670 K

  • 김진학;Tatsuo Tabaru;Hisatoshi Hirai
    • Transactions of Materials Processing
    • /
    • v.8 no.3
    • /
    • pp.233-233
    • /
    • 1999
  • To investigate the effect of tungsten addition on mechanical properties, we prepared refractory (62χ)Nb-18Si-l00Mo-l0Ti-χW (χ=0, 5, 10 and 15 mol.%) in-situ composites by the conventional arc-casting technique, and then explored the microstructure, hardness and elastic modulus at ambient temperature and tensile properties at 1670 K. The microstructure consists of relatively fine (Nb, Mo, W, Ti)/sub 5/Si₃, silicide and a Nb solid solution matrix, and the fine eutectic microstructure becomes predominant at a Si content of around 18 mol.%. The hardness of (Nb, Mo, W, Ti(/sub 5/Si₃, silicide in a W-free sample is 1680 GPa, and goes up to 1980 GPa in a W 15 mol.% sample. The hardness, however, of Nb solid solution does not exhibit a remarkable difference when the nominal W content is increased. The elastic modulus shows a similar tendency to the hardness. The optimum tensile properties of the composites investigated are achieved at W 5 mol.% sample, which exhibits a relatively good ultimate strength of 230 MPa and an excellent balance of yield strength of 215 MPa, and an elongation of 3.7%. The SEM fractography generally indicates a ductile fracture in the W-free sample, and a cleavage rupture in W-impregnated ones.

An experimental study of the friction and wear on counterpart roughness of silica particle reinforced nano composites (상대재의 거칠기에 따른 실리카 입자강화 나노 복합재료의 마찰 및 마모에 관한 실험적 연구)

  • Kim, Hyung Jin;Lee, Jung-Kyu;Koh, Sung Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.2
    • /
    • pp.162-168
    • /
    • 2014
  • The friction and wear characteristics of the rubber matrix composites filled with nano sized silica particles were investigated at ambient temperature by pin-on-disc friction test. The volume fraction of silica particles was 19%. The cumulative wear volume and wear rate of these materials on counterpart roughness were determined experimentally. The major failure mechanisms were lapping layers, deformation of matrix, ploughing, debonding of particles, fracture of particles and microcracking by scanning electric microscopy photograph of the tested surface. The cumulative wear volume showed a tendency to increase with increase of sliding distance. The wear rate of these composites tested indicated low value as increasing the sliding distance.

The Weldability of Magnesium Alloys for Car Industry

  • Lee, Mok-Young;Chang, Woong-Seong;Yoon, Byung-Hyun
    • Proceedings of the KWS Conference
    • /
    • 2005.06a
    • /
    • pp.370-376
    • /
    • 2005
  • Magnesium alloys are becoming important material for light weight car body, due to their low specific density but high specific strength. However they have a poor weldability, caused high oxidization tendency and low vapor temperature. In this study, the welding performance of magnesium alloys was investigated for automobile application. The materials were rolled magnesium alloy sheet contains Al and Zn such as AZ3l , AZ6l and AZ9l. Three types of welding process were studied, that were GTAW, Laser beam welding and FSW. To evaluate the weldability, we examined the appearance of welding bead. Also we checked bead shape and internal defects such as crack and porosity on cross section of welding bead. The mechanical property was measured for welded specimen by tensile test. For determination of the strength change by welding process, the hardness profile across the welding center was measured. For the results, the tensile properties of welded specimen were decreased obviously on all welding process. For the fusion welding process such as GTAW and laser beam welding, the surface of the welding bead was covered with oxidized magnesium dust but it was removed by simple cleaning work as wipe-out with tissue. Also under cut, that caused vaporization of base metal was occurred. for the friction stir welding, there was no oxidation, under-cut or internal defects. However it had poor weld performance, the reason was cleavage fracture occurred at plastic deformation zone. For welding of magnesium alloy, the laser beam welding process was recommended.

  • PDF

The Characteristics of Acoustic Emission of $Al_2O_3$ Ceramics by an Amount of Additive $Y_2O_3$ (소결조제 $Y_2O_3$ 함유량에 따른 $Al_2O_3$ 세라믹스의 음향방출 특성)

  • Kim, Jin-Wook;Ahn, Seok-Hwan;Nam, Ki-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.22 no.3
    • /
    • pp.71-75
    • /
    • 2008
  • This paper illustrates haw $Y_2O_3$ contributes to crack-healing strengths as a function of crack-healing temperature and the additive amount. In investigating mechanical properties, the indentation fracture method is very simple and useful, but careful attention must be paid to the statistical data processing because data may be scattered excessively, especially for brittle materials. To estimate accurate AE signal properties we applied the useful time-frequency method with a discrete wavelet analysis algorithm. In experiments, three kinds of specimens were prepared. After the specimens were indented by a Vickers indentor, they were heat-treated and crack-healed to evaluate bending strength and the AE signal. With higher amounts of the additive powder, as 1, 3, or 5% wt. of $Y_2O_3$, the concentrative tendency of dominant frequency trended toward lower frequency groups. The $Al_2O_3$ ceramic with 3% wt. of $Y_2O_3$ was judged most suitable because it demonstrated superior crack-healing ability and relative concentration on the highest frequency group.

Effect of Surface Condition on Tensile Properties of Fe-30Mn-0.2C-(1.5Al) High-Manganese Steels Hydrogen-Charged Under High Temperature and Pressure (고온-고압 수소 주입된 Fe-30Mn-0.2C-(1.5Al) 고망간강의 인장 거동에 미치는 표면 조건의 영향)

  • Lee, Seung-Yong;Lee, Sang-Hyeok;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.27 no.6
    • /
    • pp.318-324
    • /
    • 2017
  • In this study, two Fe-30Mn-0.2C-(1.5Al) high-manganese steels with different surface conditions were hydrogen-charged under high temperature and pressure; then, tensile testing was performed at room temperature in air. The yield strength of the 30Mn-0.2C specimen increased with decreasing surface roughness(achieved via polishing), but that of the 30Mn-0.2C-1.5Al specimen was hardly affected by the surface conditions. On the other hand, the tendency of hydrogen embrittlement of the two high-manganese steels was not sensitive to hydrogen charging or surface conditions from the standpoints of elongation and fracture behavior. Based on the EBSD analysis results, the small decrease in elongation of the charged specimens for the Fe-30Mn-0.2C-(1.5Al) high-manganese steels was attributed to the enhanced dislocation pile-up around grain boundaries, caused by hydrogen.

A Numerical Study of Hydraulic Fractures Propagation with Rock Bridges (Rock bridges를 고려한 수치 해석적 수압파쇄 균열거동 연구)

  • 최성웅
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2000.09a
    • /
    • pp.201-210
    • /
    • 2000
  • Rock bridge in rock masses can be considered as one of several types of opening-mode fractures, and also it has been known to have a great influence on the stability of structures in rock mats. In the beginning of researching a rock bridge it used to be studied only in characteristics of its behavior, as considering resistance of material itself. However the distribution pattern of rock bridges, which can affect the stability of rock structures, is currently researched with a fracture mechanical approach in numerical studies. For investigating the effect of rock bridges on the development pattern of hydraulic fractures, the author analyzed numerically the stress state transition in rock bridges and their phenomena with a different pattern of the rock bridge distributons. From the numerical studies, a two-crack configuration could be defined to be representative of the most critical conditions for rock bridges, only when cracks are systematic and same in their length and angle. Moreover, coalescence stresses and onset of propagation stresses could be known to increase with decreasing s/L ratio or increasing d/L ratio. The effect of pre-existing crack on hydraulic fracturing was studied also in numerical models. Different to the simple hydraulic fracturing modeling in which the fractures propagated exactly parallel to the maximum remote stress, the hydraulic fractures with pre-existing cracks dial not propagate parallel to the maximum remote stress direction. These are representative of the tendency to change the hydraulic fractures direction because of the existence of pre-existing crack. Therefore s/L, d/L ratios will be identical as a function effective on hydraulic fractures propagation, that is, the $K_{I}$ vague increase with decreasing s/L ratio or increasing d/L ratio and its magnification from onset to propagation increases with decreasing s/L ratio. The scanline is a commonly used method to estimate the fracture distribution on outcrops. The data obtained from the scanline method can be applied to the evaluation of stress field in rock mass.s.

  • PDF