• 제목/요약/키워드: fracture surfaces

검색결과 432건 처리시간 0.021초

틸팅열차 차체8 탄소섬유직물/에폭시 복합재의 모우드 II 층간파괴인성 평가 (Evaluation of Mode II Interlaminar Fracture Toughness for Carbon Fabric/Epoxy Composites for Tilting Train Carbody)

  • 윤성모;이은동;허광수;정종절;신광복
    • 한국철도학회논문집
    • /
    • 제8권2호
    • /
    • pp.195-201
    • /
    • 2005
  • Mode II interlaminar fracture behaviors of carbon fabric/epoxy composites, which are applicable to tilting train carbodies, was investigated by the ENF (End notched flexure) test. The specimens were made of CF3327 plain woven fabric with epoxy and a starter delamination at one end was made by inserting Teflon film with the thickness of 12.5$mu$m or 25.0$mu$m. The equation for mode II interlaminar fracture toughness was suggested based on the effective crack length from the compliance of load-displacement curve. Mode II interlaminar fracture toughness was evaluated for several types of the specimens. Also crack propagating behaviors and fracture surfaces were examined through an optical travelling scope and a scanning electron microscope.

컴프레서용 Al-Si 합금의 파괴 및 마모 특성 (Fracture and Wear Characteristics of Al-Si alloy used for Compressor)

  • 김재훈;김덕회
    • Tribology and Lubricants
    • /
    • 제15권2호
    • /
    • pp.141-149
    • /
    • 1999
  • Fracture, fatigue and wear characteristics of Al-Si alloy used for compressor are experimentally studied. Plane strain fracture toughness test is carried out using three point bending specimen. Fatigue test is performed under constant loading condition and wear test is carried out as a function of sliding velocity and applied load. To obtain the crack propagation characteristics and wear mechanism of Al-Si alloy, fracture and worn surfaces are investigated using SEM. It is verified that fracture and fatigue strength of Al-Si alloy are improved by the fine microstructure of alloy. The wear behavior and specific wear amount of Al-Si alloy are not dependent on the microstructure but on a function of the silicon content. Anodizing on the surface of Al-Si alloy, surface hardness and wear characteristics are improved.

부직포가 복합적층판의 층간파괴인성에 미치는 효과 (Effect of non-woven tissues on interlaminar fracture toughness of composite laminate)

  • 김영배;정성균;강진식;김태형
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2000년도 추계학술발표대회 논문집
    • /
    • pp.110-114
    • /
    • 2000
  • The Interlaminar fracture behavior of hybrid composite with non-woven carbon tissue was investigated under Mode I (DCB) and Mode II (ENF) loading condition. Hybrid composites were manufactured by means of inserting a non-woven tissue between prepreg layers. Two kinds of specimens were prepared from [0]$_{24}$ and [$0_{12}/0_{12}$]. Where, the symbol "/" means that a non-woven carbon tissue was located at 0/0 mid-plane of the specimen. The interlaminar fracture toughness of hybrid composites was compared with that of CFRP. The fracture surfaces of the specimens were observed using optical microscope and SEM, and the failure mechanism was discussed. The hybrid laminates, which are made by inserting non-woven carbon tissue between layers, were shown to be effective to remarkably improve Mode II fracture toughness.toughness.

  • PDF

압입에 따른 알루미나 세라믹스의 이축 파괴 거동 (Biaxial Fracture Behavior of Alumina Ceramics : Indentation Effect on Ball-on-3-ball Test)

  • 정성민;박성은;이홍림
    • 한국세라믹학회지
    • /
    • 제37권7호
    • /
    • pp.713-720
    • /
    • 2000
  • The biaxial fracture behavior of alumina ceramics was studied using ball-on-3-ball test. The polished surfaces of alumina specimens were indented at 0mm, 1mm, 2mm, 3mm apart from the center of the specimen along path A, passing between the two supporting balls from the center of the specimen, and along path B, passing above the three supporting balls from the center of the specimen. The fracture strength of the indented specimens was measured using the ball-on-3-ball test, a kind of biaxial strength test. The fracture strength increased with increasing the distance from the center to indented position. The fracture strength of the specimen indented along path B was higher than that of the specimens indented along path A. It was presented that the fracture caused by tangential stress rather than radial stress when the indented positions are 1mm and 2mm from the center of the specimen. This phenomenon was in good agreement with FEM analysis.

  • PDF

열에너지를 고려한 파괴인성치 고찰 (Evaluation for Fracture Toughness with Considering the Thermal Energy)

  • 김정표;임창현;석창성
    • 한국안전학회지
    • /
    • 제16권2호
    • /
    • pp.1-6
    • /
    • 2001
  • In the case of a crack propagation a portion of the work of inelastic deformation near the crack tip is dissipated as heat. In order to understand the thermal effect on fracture toughness, tensile tests were carried out using thermocouples to monitor the variation of temperature. The experimental results show that the temperature of specimen was increased $5.4^{\circ}C$ at static load condition. And the thermal effect is investigated connected with the steady-state stress in the vicinity of a crack propagation in the elastic-plastic C-T specimen theoretically. And fracture toughness, the energy to make crack surfaces, presented correctively. The fracture toughness with considering heat at the blunting of the crack tip is lower about 16.9% than that of ignoring heat. So, it is resonable to apply the fracture toughness with considering thermal energy and it would be good explanation for constraint effect depending on the configuration in the presence of excessive plasticity.

  • PDF

A cohesive model for concrete mesostructure considering friction effect between cracks

  • Huang, Yi-qun;Hu, Shao-wei
    • Computers and Concrete
    • /
    • 제24권1호
    • /
    • pp.51-61
    • /
    • 2019
  • Compressive ability is one of the most important mechanical properties of concrete material. The compressive failure process of concrete is pretty complex with internal tension, shear damage and friction between cracks. To simulate the complex fracture process of concrete at meso level, methodology for meso-structural analysis of concrete specimens is developed; the zero thickness cohesive elements are pre-inserted to simulate the crack initiation and propagation; the constitutive applied in cohesive element is established to describe the mechanism of crack separation, closure and friction behavior between the fracture surfaces. A series of simulations were carried out based on the model proposed in this paper. The results reproduced the main fracture and mechanical feature of concrete under compression condition. The effect of key material parameters, structure size, and aggregate content on the concrete fracture pattern and loading carrying capacities was investigated. It is found that the inner friction coefficient has a significant influence on the compression character of concrete, the compression strength raises linearly with the increase of the inner friction coefficient, and the fracture pattern is sensitive to the mesostructure of concrete.

구리계 리드프레임/EMC 접합체의 파괴거동 (Fracture Behavior of Cu-based leadframe/EMC joints)

  • 이호영;유진
    • 한국재료학회지
    • /
    • 제10권8호
    • /
    • pp.551-557
    • /
    • 2000
  • 구리계 리드페임의 표면에 흑생산화물을 형성시키기 위하여 알칼리 용액에 담궈 산화시킨후 EMC(epoxy molding compound)로 몰딩하였고 기계적 가공을 하여 SDCB(sandwiched double-cantilever beam) 및 SBN(sandwiched Brazil-nut)시편을 만들었다. SDCB와 SBN 시편은 리드프레임/EMC 계면의 접착력을 각각 준 mode I 하중 및 혼합모드 하중 하에서 파괴인성치로 측정하기 위하여 고안되었다. 파괴경로를 밝혀내기 위하여 접착력 츨정 후에 얻어진 파면에 대하여 glancing-angle XRD, SEM, AFM, EDS 및 AES를 이용하여 분석하였다. SDCB 실험 후의 파면은 파괴되는 양상에 따라 세 가지 형태로 나눌 수 있었으며, 각 형태는 리드프레임의 접착전 표면 산화물 형성 상태와 밀접한 관계가 있었다. SBN 실험 후의 파면은 균열에서 가까운 부분과 먼 부분으로 나누어지는 특징을 보였는데, 이는 동적 파괴 효과(dynamic fracture effect)에 기인하는 것이라 생각된다. 또한 위상각에 따라 확실히 다른 파괴 양상을 보였는데, 이는 위상각에 따라 mode II 성분이 변하기 때문으로 생각된다.

  • PDF

길들이기에 의한 잔류응력의 형성과 표면파괴 (The Formation of Residual Stresses and the Surface Fracture by the Break-in Process)

  • 김진욱;이영제
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제31회 춘계학술대회
    • /
    • pp.159-165
    • /
    • 2000
  • In this paper the residual stresses on lubricated sliding surfaces were measured during break-in procedure and up to scuffing by the X-ray diffraction method. The cylinder-on-disk type tribometer was used with the line-contact geometry. Scuffing tests were done using a constant load. In the break-in procedure the loads were increased from very low values in several steps. It was found that the sliding surfaces with break-in represented relatively higher values of residual compressive stresses than those without break-in. The residual stresses below the surfaces showed the small amount of stress increases. The results of scuffing tests with and without break-in showed the same trends as break-in tests did. However, in case of tests with break-in procedure the stresses below the surfaces showed very large increases in the residual compressive stresses. From the tests of break-in and scuffing, it was found that the increases in scuffing lives were related with the increases of residual stresses on the lubricated sliding surfaces with break-in.

  • PDF

임계응력 하 거친 암석 균열의 Thermoshearing 수치모델링: 국제공동연구 DECOVALEX-2023 Task G (Numerical Modeling of Thermoshearing in Critically Stressed Rough Rock Fracture: DECOVALEX-2023 Task G)

  • 박정욱;박찬희;장리;윤정석;손장윤;이창수
    • 터널과지하공간
    • /
    • 제33권3호
    • /
    • pp.189-207
    • /
    • 2023
  • In the present study, the thermoshearing experiment on a rough rock fracture were modeled using a three-dimensional grain-based distinct element model (GBDEM). The experiment was conducted by the Korea Institute of Construction Technology to investigate the progressive shear failure of fracture under the influence of thermal stress in a critical stress state. The numerical model employs an assembly of multiple polyhedral grains and their interfaces to represent the rock sample, and calculates the coupled thermo-mechanical behavior of the grains (blocks) and the interfaces (contacts) using 3DEC, a DEM code. The primary focus was on simulating the temperature evolution, generation of thermal stress, and shear and normal displacements of the fracture. Two fracture models, namely the mated fracture model and the unmated fracture model, were constructed based on the degree of surface matedness, and their respective behaviors were compared and analyzed. By leveraging the advantage of the DEM, the contact area between the fracture surfaces was continuously monitored during the simulation, enabling an examination of its influence on shear behavior. The numerical results demonstrated distinct differences depending on the degree of the surface matedness at the initial stage. In the mated fracture model, where the surfaces were in almost full contact, the characteristic stages of peak stress and residual stress commonly observed in shear behavior of natural rock joints were reasonably replicated, despite exhibiting discrepancies with the experimental results. The analysis of contact area variation over time confirmed that our numerical model effectively simulated the abrupt normal dilation and shear slip, stress softening phenomenon, and transition to the residual state that occur during the peak stress stage. The unmated fracture model, which closely resembled the experimental specimen, showed qualitative agreement with the experimental observations, including heat transfer characteristics, the progressive shear failure process induced by heating, and the increase in thermal stress. However, there were some mismatches between the numerical and experimental results regarding the onset of fracture slip and the magnitudes of fracture stress and displacement. This research was conducted as part of DECOVALEX-2023 Task G, and we expect the numerical model to be enhanced through continued collaboration with other research teams and validated in further studies.

Rock Fracture Centerline Extraction based on Hessian Matrix and Steger algorithm

  • Wang, Weixing;Liang, Yanjie
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제9권12호
    • /
    • pp.5073-5086
    • /
    • 2015
  • The rock fracture detection by image analysis is significant for fracture measurement and assessment engineering. The paper proposes a novel image segmentation algorithm for the centerline tracing of a rock fracture based on Hessian Matrix at Multi-scales and Steger algorithm. A traditional fracture detection method, which does edge detection first, then makes image binarization, and finally performs noise removal and fracture gap linking, is difficult for images of rough rock surfaces. To overcome the problem, the new algorithm extracts the centerlines directly from a gray level image. It includes three steps: (1) Hessian Matrix and Frangi filter are adopted to enhance the curvilinear structures, then after image binarization, the spurious-fractures and noise are removed by synthesizing the area, circularity and rectangularity; (2) On the binary image, Steger algorithm is used to detect fracture centerline points, then the centerline points or segments are linked according to the gap distance and the angle differences; and (3) Based on the above centerline detection roughly, the centerline points are searched in the original image in a local window along the direction perpendicular to the normal of the centerline, then these points are linked. A number of rock fracture images have been tested, and the testing results show that compared to other traditional algorithms, the proposed algorithm can extract rock fracture centerlines accurately.