• Title/Summary/Keyword: fracture surfaces

Search Result 432, Processing Time 0.032 seconds

Influence of coloring liquids on the shear bond strength between zirconia and veneering ceramic (색소체용액 침투가 지르코니아 및 전장용 세라믹의 전단결합강도에 미치는 영향)

  • Jung, Jong-Hyun;Oh, Gye-Jeong
    • Journal of Technologic Dentistry
    • /
    • v.38 no.4
    • /
    • pp.291-298
    • /
    • 2016
  • Purpose: This study was to evaluate the effect of coloring liquids on the shear bond strength between zirconia and veneering ceramic. Methods: Zirconia(15 mm in diameter, 2.5 mm in thickness; n=40) used in the experiment were divided into 5 groups depending on the coloring liquid. Each specimen were polished using a polishing machine(LaboPol-2, Struers, UK). A cylinder of veneering porcelain(6 mm in diameter, 3 mm in thickness) was fabricated and fired on zirconia surfaces. The shear bond strength was measured using a universal testing machine(Model 4302, Instron, USA). All data were analyzed statistically using a one-way ANOVA and Tukey's multiple comparisons test. After the shear bond test, fracture surfaces were examined by SEM. Results: Colored zirconia showed a higher shear bonding strength than that of uncolored zirconia except for colored zirconia immersed in Zirkonzahn coloring liquid. In particular, colored zirconia immersed in Kuwotech coloring liquid showed the highest shear bond strength. After the shear bond test, mixed failure patterns were mainly observed in the failure between zirconia and veneering ceramic. Conclusion: Coloring liquid enhanced the shear bond strength zirconia and veneering ceramic than uncolored zirconia.

Effect of Immersion in Water and Thermal Cycling on the Mechanical Properties of Light-cured Composite Resins (광중합형 수복용 복합레진의 기계적 성질에 미치는 수중침적과 Thermal Cycling의 영향)

  • Bae, Tae-Sung;Kim, Tae-Jo;Kim, Hyo-Sung
    • Journal of Biomedical Engineering Research
    • /
    • v.17 no.3
    • /
    • pp.327-336
    • /
    • 1996
  • This study was performed to investigate the effec% of immersion in water and thermal cycling on the mechanical peoperties of light cured restorative composite resins. Five commerically available light-cured composite resins(Photo Clearfil A : CA, Lite-Fil A . LF, Clearril Photo Posterior CP, Prisms AP.H.. PA, 2100 : ZH) were unto The specimens of 12 m in diameter and 0.7 m in thickness were made, and an immersion in $37^{\circ}C$ water for 7 days and a thermal cycling of 1000 cycles at 15 second dwell time each in $5^{\circ}C$ and $55^{\circ}C$ baths were performed. Biaxial flexure test was conducted using the ball-on-three-ball method at the crosshead speed of 0.5mm/min. In order to investigate the deterioration of composite resins during the thermal cycling test, Weibull analysis for the biaxial flexure strengths was done. Fracture surfaces and the surfaces before and after the thermal cycling test were examined by SEM. The highest Weibull modulus value of 10.09 after thermal cycling tests which means the lowest strength variation, was observed in the CP group, and the lowest value of 4.47 was obsered in the LF Group. Biaxial flexure strengths and Knoop hardness numbers significantly decreased due to the thermal cycling ($\textit{p}$< 0.01), however, they recovered when specimens were drie4 The highest biaxial flexure strength of 125.65MPa was observed in the ZH group after the thermal cycling test, and the lowest value of 64.86MPa was observed in the CA group. Biaxial flexure strengths of ZH and CP groups were higher than those of PA, CF, and CA groups after thermal cycling test($\textit{p}$< 0.05). Knoop hardness numbers of CP group after the thermal cycling test was the highest(95.47 $\pm$ 7.35kg/$mm^2$) among the samples, while that of CA group was the lowest(30.73 $\pm$ 2.58kg/$mm^2$). Knoop hardness numbers showed the significant differences between the CP group and others after the thermal cycling test(($\textit{p}$< 0.05). Fracture surfaces showed that the composite resin failure developed along the matrix resin and the filler/resin interface region, and the cracks propagated in the conical shape from the maximum tensile stress zone.

  • PDF

Fabrication of carbon nano tube reinforced grass fiber composite and investigation of fracture surface of reinforced composites (CNT 첨가에 따른 유리섬유/섬유 복합재 제작 및 특성 평가)

  • Kim, Hyeongtae;Lee, Do-Hyeon;An, Woo-Jin;Oh, Chang-Hwan;Je, Yeonjin;Lee, Dong-Park;Cho, Kyuchul;Park, Jun Hong
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.31 no.4
    • /
    • pp.159-165
    • /
    • 2021
  • The fiber composites have been investigated as lightweight structure material platforms for aerospace applications because their strength can be enhanced by adding reinforcement without a significant increase in weight. In this study, the fabrication and characterization of carbon nanotube (CNT) reinforced glass fiber composites are demonstrated to enhance the tensile strength of longitudinal direction along the glass fibers. Due to the reinforcement of CNT in epoxy layers, the yield strength of fiber/epoxy composites is enhanced by about 10 %. Furthermore, using scanning electron microscopy, analysis of fracture surfaces shows that mixed CNT in epoxy layers acts as necking agents between fractured surfaces of fiber/epoxy; thereby, initiation and evolution of crack across fiber composite can be suppressed by CNT necking between fractured surfaces.

The Toughness of Polyurethane and Epoxy Resins IPNs (폴리우레탄-에폭시 IPNs의 강인성)

  • Kim, Jong Seok;Hong, Suk Pyo
    • Applied Chemistry for Engineering
    • /
    • v.9 no.3
    • /
    • pp.445-450
    • /
    • 1998
  • Interpenetrating polymer networks(IPNs) were prepared from castor oil-type polyurethanes(PUs) and epoxy resin. Two types of PU were prepared by using polypropylene ether glycol(PPG) as a chain extending agent and caster oil(CO) as a crosslinking agent. COPU/epoxy simultaneous interpenetrating polymer networks(SINs) based on CO had a better compatibility over the all composition than PPGPU/epoxy SINs based on PPG. The flexural strength of all PPGPU/epoxy SINs was decreased with decreasing entanglement of networks. COPU/epoxy SINs showed the higher fracture toughness and mechanial properties than the PPGPU/epoxy SINs. Fracture surfaces of all of the SINs showed the localized shear deformation and crack deflection rather than generation of stress whitening associated with the cavitation.

  • PDF

Development of Linear Annealing Method for Silicon Direct Bonding and Application to SOI structure (실리콘 직접 접합을 위한 선형가열법의 개발 및 SOI 기판에의 적용)

  • 이진우;강춘식;송오성;양철웅
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.2
    • /
    • pp.101-106
    • /
    • 2000
  • SOI (Silicon-On-Insulator) substrates were fabricated with varying annealing temperature of $25-660^{\circ}C$ by a linear annealing method, which was modified RTA process using a linear shape heat source. The annealing method was applied to Si ∥ $SiO_2$/Si pair pre-contacted at room temperature after wet cleaning process. The bonding strength of SOI substrates was measured by two methods of Razor-blade crack opening and direct tensile test. The fractured surfaces after direct tensile test were also investigated by the optical microscope as well as $\alpha$-STEP gauge. The interface bonding energy was 1140mJ/m$^2$ at the annealing temperature of $430^{\circ}C$. The fracture strength was about 21MPa at the temperature of $430^{\circ}C$. These mechanical properties were not reported with the conventional furnace annealing or rapid thermal annealing method at the temperature below $500^{\circ}C$. Our results imply that the bonded wafer pair could endure CMP (Chemo-Mechanical Polishing) or Lapping process without debonding, fracture or dopant redistribution.

  • PDF

The Assessment of Ceramic Wear by the Parameter Scf (Scf 파라메타에 의한 세라믹 마멸 평가)

  • 김상우;김석삼
    • Tribology and Lubricants
    • /
    • v.12 no.1
    • /
    • pp.56-65
    • /
    • 1996
  • The result of wear test for ceramic materials was assessed by Scf parameter to verify the usefulness of the proposed Scf parameter. Friction and wear tests were carried out with ball on disk type. The materials used in this study were HIPed Alumina $(Al_2O_3)$, Silicon carbide (sic), Silicon nitride $(Si_3N_4)$ and Zirconia $(ZrO_2)$. The tests were carried out at room temperature with self mated couples of ceramic materials under lubricated condition. Turbine oil was used as a lubricant. In this test, increasing the load, specific wear rates and wear coefficients of four kinds of ceramic materials had a tendency to increase. The wear coefficients of ceramic materials were in order of $Al_2O_3, SiC, Si_3N_4, ZrO_2$. Worn surfaces investigated by SEM had residual surface cracks and wear particles caused by brittle fracture. As the fracture toughness of ceramic materials was higher, wear resistance more increased. The roughness of worn surface had correlation with wear rate. The wear rate(W$_{s}$) and Scf parameter showed linear relationship in log-log coordinates and the wear equation was given as $W_s = 5.52 $\times$ Scf^{5.01}$.

A study on the size of product shear surface in shearing process (전단 가공에서 제품 전단면의 크기에 변화에 관한 연구)

  • Son, Jong-Min;Lee, Hui-Ju;Cho, Gi-Heum;Shin, Seong-Eun;Kim, Sei-Whan;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.11 no.1
    • /
    • pp.26-29
    • /
    • 2017
  • Burrs generated during shear forming such as notching and piercing may cause lifting during product assembly, which may deteriorate the productivity and quality of products. In this study, various shear angles and variable clearances between the punch and the die were applied in experimental notching tests to investigate the shear fracture surface and the burr height due to various conditions. The experimental results show that the clearance has the greatest effect on shear and fracture surfaces. It is considered that the height of the shear section increases slightly as the shear angle increases.

Fabrication and Tensile Properties of Alloy 617 base ODS Alloy (Alloy 617계 산화물 분산강화(ODS) 합금의 제조와 인장특성)

  • Min, Hyoung-Kee;Kang, Suk-Hoon;Kim, Tae-Kyu;Han, Chang-Hee;Kim, Do-Hyang;Jang, Jin-Sung
    • Journal of Powder Materials
    • /
    • v.18 no.6
    • /
    • pp.482-487
    • /
    • 2011
  • Alloy 617, Ni-22Cr-12Co-9Mo base oxide dispersion strengthened alloy was fabricated by using mechanical alloying, hot isostatic pressing and hot rolling. Uniaxial tensile tests were performed at room temperature and at $700^{\circ}C$. Compared with the conventional Alloy 617, ODS alloy showed much higher yield strength and tensile strength, but lower elongation. Fracture surfaces of the tensile tested specimens were investigated in order to find out the mechanism of fracture mode at each test temperature. Grain adjustment during tensile deformation was analyzed by electron backscattered diffraction mapping, inverse pole figures and TEM observation.

Effect of Annealing on the Mechanical properties of Fe-6.5wt% Si Alloy (Fe-6.5wt% Si 합금의 역학 특성에 미치는 어닐링 효과)

  • Yun, Yeong-Gi;Yun, Hui-Seok;Hong, Seong-Gil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.12
    • /
    • pp.2909-2916
    • /
    • 2000
  • 6.5wt% Si steel is widely known as an excellent magnetic material because its magnetostriction is nearly zero. The AX magnetic properties as magnetostriction of 6.5% Si steel were evaluated and compared with those of conventional 3% Si steel sheet. In this paper, the fracture behavior of the poly crystals and single crystals of Fe-6.5wt%Si alloy has been observed. Single crystals were prepared by Floating Zone(FZ) method, which melts the alloy by the use of high temperature electron beam in pure argon gas condition. And the single crystals were annealed at 500$^{\circ}C$ and 700$^{\circ}C$ respectively and tensile tested at room temperature. According to the result, B2 phase has more good elongation than DO$_3$ phase. It was also found that the fracture surfaces of the single crystals have hairline facets in same direction, and the facets change the direction according to the single crystal phase.

Texture and Mechanical Properties of Ni-W Alloy Tapes Fabricated from Powder Mother Billets (분말 모합금 빌렛으로부터 제조된 Ni-W 합금테이프의 기계적 성질과 집합도)

  • Kim, Min-Woo;Jun, Byung-Hyuk;Ji, Bong-Ki;Jung, Kyu-Dong;Kim, Chan-Joong
    • Journal of Powder Materials
    • /
    • v.14 no.1 s.60
    • /
    • pp.13-18
    • /
    • 2007
  • The mother Ni-W (1-5 wt.%) alloy billets for coated conductor substrate were fabricated by powder metallurgy process. The tensile test results for the sintered Ni-W rods showed the increase of mechanical strength and decrease of ductility with increasing W content due to the solid solution hardening. All the fracture surfaces of the tested specimens showed the typical ductile fracture mode of dimple rupture due to the local necking. The Ni-W alloy billets were made into tape by cold rolling. After the appropriate heat treatment for recrystallization, the brass texture formed by the cold rolling was converted to the complete cube texture. The in-plane and out of plane texture of the tapes estimated by x-ray pole figure were smaller than 9 degree and 7 degree, respectively. The effect of the W addition on the texture development seems not to be significant.