• 제목/요약/키워드: fracture process zone

검색결과 181건 처리시간 0.024초

노치 형상 및 장약조건의 변화에 따른 균열발생양상에 관한 연구 (Study on the Crack Generation Patterns with Change in the Geometry of Notches and Charge Conditions)

  • 박승환;조상호;김승곤;김광염;김동규
    • 터널과지하공간
    • /
    • 제20권1호
    • /
    • pp.65-72
    • /
    • 2010
  • 암반발파에서 평활한 파단면을 확보하고 굴착손상영역을 제어하기 위하여 노치장약공을 이용한 균열제어공법이 제안되었다. 본 연구에서는 노치형상과 장약조건이 균열발생 및 성장에 미치는 영향을 살펴보기 위하여 날개형 노치장약공을 갖는 발파모델을 구축하고 동적 파괴과정 해석법을 이용한 암반 파괴과정 해석을 수행하였다. 그 결과, 노치 길이가 증가함에 균열의 성장 길이가 증가하며 파단면의 거칠기가 감소하고 장약공 상하부에 손상균열의 발생이 억제되는 경향을 보였다. 해석결과로부터 노치 길이 및 개구 폭에 따른 응력집중계수의 변화 및 균열발생 양상을 비교 분석하여 균열제어에 미치는 영향인자에 대하여 고찰하였다.

직접 에너지 적층을 통한 STS316L 소재의 보수 공정에서 그루브 형상이 기계적 특성에 미치는 효과 (Effect of Groove Shapes on Mechanical Properties of STS316L Repaired by Direct Energy Deposition)

  • 오욱진;손용;손종윤;신광용;심도식
    • 소성∙가공
    • /
    • 제29권2호
    • /
    • pp.103-112
    • /
    • 2020
  • This study explores the effects of different pre-machining conditions on the deposition characteristics and mechanical properties of austenitic stainless steel samples repaired using direct energy deposition (DED). In the DED repair process, defects such as pores and cracks can occur at the interface between the substrate and deposited material. In this study, we varied the shape of the pre-machined zone for repair in order to prevent cracks from occurring at the slope surface. After repairs by the DED process, macro-scale cracks were observed in samples that had been pre-machined with elliptic and trapezoidal grooves. In addition, it was not possible to completely prevent micro-crack generation on the sloped interfaces, even in the capsule-type grooved sample. From observation of the fracture surfaces, it was found that the cracks around the inclined interface were due to a lack of fusion between the substrate and the powder material, which led to low tensile properties. The specimen with the capsule-type groove provided the highest tensile strength and elongation (respective of 46% and 571% compared to the trapezoidal grooved specimen). However, the tensile properties were degraded compared to the non-repaired specimen (as-hot rolled material). The fracture characteristics of the repaired specimens were determined by the cracks at the sloped interfaces. These cracks grew and coalesced with each other to form macro-cracks, they then coalesced with other cracks and propagated to the substrate, causing final fracture.

미세 용접된 BLU CCFL 전극의 유리비딩 열처리 온도에 따른 접합부 특성 (Characteristics of Microwelded BLU CCFL Electrode in Terms of Glass Beading Heat Treatment Temperature)

  • 김광수;김상덕;권혁동
    • Journal of Welding and Joining
    • /
    • 제27권4호
    • /
    • pp.73-78
    • /
    • 2009
  • Characterization of the microweld CCFL electrode for the TFT-LCD backlight unit was carried out in terms of the glass beading heat treatment conditions. We evaluate the weld zone and parent metal of the microweld CCFL electrodes that were exposed to simulated glass beading heat treatment. The CCFL electrode was composed of the cup made with pure Ni, the pin made with pure Mo and the lead wire made with Ni-Mn alloy. Each part of the electrode was assembled together by micro spot welding process and then the assembled electrodes were exposed to simulated glass beading temperatures of $700^{\circ}C,\;750^{\circ}C$ and $800^{\circ}C$. The microstructures of the microweld CCFL electrode were observed by using optical microscope, scanning electron microscope and EDS. Micro-tensile and microhardness test were also carried out. The results indicated that the grain coarsening in the HAZs(heat affected zones) for both the cup-pin weld and pin-lead wire were exhibited and the grain coarsening of the HAZ for the cup and the lead wire was more obvious than the HAZ of the pin. The micro-tensile test revealed that the fracture occurred at the cup-pin weld zone for all test conditions. The fracture surface could be classified into two parts such as pin portion and cup portion including weld nugget. The failure was seemed to be initiated from the boundary between nugget and pin through the weld joint. The result of the microhardness measurement exhibited that the relatively low hardness value, about 105HV was recorded at the HAZ of the cup. This value was about 50% less than that of the original value of the cup. The reduction of the microhardness was considered as the cause of the grain coarsening due to welding process. It was also appeared that there was no change in electric resistance for the standard electrodes and heat treated electrodes.

페리다이나믹스 해석법을 통한 동적취성 파괴거동해석: 분기 균열각도와 균열 전파속도 (Dynamic Brittle Fracture Captured with Peridynamics: Crack Branching Angle & Crack Propagation Speed)

  • 하윤도;조선호
    • 한국전산구조공학회논문집
    • /
    • 제24권6호
    • /
    • pp.637-643
    • /
    • 2011
  • 본 논문에서는 결합 기반 페리다이나믹스 해석법을 사용하여 동적취성 파괴시뮬레이션을 수행하였다. 페리다이나믹스 모델은 분기 균열, 균열 불안정성, 균열 경로의 비대칭성, 연쇄 분기 균열, 2차 균열 전파 등 다양한 동적취성 파괴현상을 잘 해석해 낼 수 있다. 본 논문에서는 분기 균열의 분기 각도와 균열 전파속도에 대한 응력파의 영향에 대해 연구하였다. 극한 시점에 도달한 균열은 둘 이상으로 분기되어 전파되고 그 전파속도는 기존 균열의 전파속도와 크게 달라지지 않는다는 사실이 여러 실험을 통해서 입증이 되었다. 페리다이나믹스로 해석된 분기 균열은 실험을 통해 제안된 균열 전파현상들과 잘 부합되는 것을 확인할 수 있었다.

Crack Layer 이론을 이용한 배관용 고밀도 폴리에틸렌의 응력부식균열 진전 및 수명 예측 모델 (Modeling of stress corrosion crack growth and lifetime of pipe grade high density polyethylene by using crack layer theory)

  • 위정욱;최병호
    • 한국압력기기공학회 논문집
    • /
    • 제11권2호
    • /
    • pp.45-50
    • /
    • 2015
  • In many cases, the field fracture mechanism of the thermoplastic pipe is considered as either brittle or environmental fractures. Thus the estimation of the lifetime by modeling slow crack growth considering such fracture mechanisms is required. In comparison of the some conventional and empirical equations to explain the slow crack growth rate such as the Paris' law, the crack layer theory can be used to simulate the crack and process zone growth behaviors precisely, so the lifetime of thermoplastic pipe can also be accurately estimated. In this study, the modified crack layer theory for the stress corrosion cracking (SCC) of high density polyethylene is introduced with detailed algorithm. The oxidation induction time of the HDPE is also considered for the reduction of specific fracture energy during exposed to chemical environments. Furthermore, the parametric study for an important SCC parameter is conducted to understand the slow crack growth behavior of SCC.

고장력강(HT50) 레이저용접부의 용접잔류응력 및 파괴인성 특성 (The Welding Residual Stress and Fracture Toughness Characteristics of HT50 Laser Welded Joint)

  • 노찬승;방희선;방한서;오종인
    • 한국해양공학회지
    • /
    • 제21권3호
    • /
    • pp.71-76
    • /
    • 2007
  • Recently, many industries have been employing the application of laser beam welding, due to the resulting high welding quality, such as smaller width of melting and heat affective zone, smaller welding deformation, and fine grains of weldment, compared to arc welding. However, in order to appropriately utilize this welding process with steel structure, the characteristics of welding residual stresses and fracture toughness in welded joints are to be investigated for reliability. Therefore, in this study, the mechanical properties of weldments by arc and laser welding are investigated using FEM to confirm the weldability of laser welding to the general structural steel (HT50). The Charpy impact test and 3-points bending CTOD test are carried out in the range of temperatures between $-60^{\circ}C\;and\;20^{\circ}C$, in order to understand the effect on the fracture toughness of weldments. From the research results, it has been found that the maximum residual stress appears at the center of plate thickness, and that the fracture toughness is influenced by strength mis-match.

AE방법에 의한 Flash Butt 용접부의 파괴거동 평가 (An Evaluation of the Fracture Behavior for Flash Butt Welding zone by Acoustic Emission Method)

  • 김용수;이하성;강동명
    • 한국안전학회지
    • /
    • 제9권1호
    • /
    • pp.9-18
    • /
    • 1994
  • In this study, we conducted experimental tests to evaluate fracture behaviors of fresh-butt welded metal by Acoustic Emission technique. We selected similar welding and dissimilar welding process, the one welded for SM45C, SS41 and SUS304 of each material, the other for SM45C and SS41, SM45C and SUS304 and SS41 and SUS304. The fracturing processes of weld metal were estimatied through the fracture toughness test with compact tension specimens and fractography analysis. In ASTM test method E-399, type I curves for materials of this study were obtained by load-cod diagram of fracture toughness test. and 5% offset load( $P_{5}$) was estimated as the estimated crack initial load( $P_{Q}$), The estimated crack initial load( $P_{Q}$) of similar welding materials generally lower than base matal, and then SM45C appeared greatly in decreasing rate of PB, SS41 and SUS304 appeared in order. $P_{Q}$ of dissimilar welding materials were lower than the similar welding materials. $P_{Q}$ of welding of SM45C and SS41 appeared in small, SUS304 and SS41 appeared greatly in dissimilar welding materials. In fracture toughness test, AE counts increased before the inflection point of the slope, decreased after that. It was found that increasing of AE counts were due to the microcrack formation at the crack tip near the $P_{5}$ point through AE data. For welding materials in this study, both low and high AE amplitude appeared simulataneously. It was confirmed that the low AE amplotude was due to formation of micro void, micro crack or micro dimple, the high AE amplitude was caused by microvoid coalescence and quasi-cleavage fracture through analyses of fractograpy.apy.apy.apy.

  • PDF

Current Concepts in the Treatment of Traumatic C2 Vertebral Fracture : A Literature Review

  • Subum Lee;Junseok W Hur;Younggyu Oh;Sungjae An;Gi-Yong Yun;Jae-Min Ahn
    • Journal of Korean Neurosurgical Society
    • /
    • 제67권1호
    • /
    • pp.6-13
    • /
    • 2024
  • The integrity of the high cervical spine, the transition zone from the brainstem to the spinal cord, is crucial for survival and daily life. The region protects the enclosed neurovascular structure and allows a substantial portion of the head motion. Injuries of the high cervical spine are frequent, and the fractures of the C2 vertebra account for approximately 17-25% of acute cervical fractures. We review the two major types of C2 vertebral fractures, odontoid fracture and Hangman's fracture. For both types of fractures, favorable outcomes could be obtained if the delicately selected conservative treatment is performed. In odontoid fractures, as the most common fracture on the C2 vertebrae, anterior screw fixation is considered first for type II fractures, and C1-2 fusion is suggested when nonunion is a concern or occurs. Hangman's fractures are the second most common fracture. Many stable extension type I and II fractures can be treated with external immobilization, whereas the predominant flexion type IIA and III fractures require surgical stabilization. No result proves that either anterior or posterior surgery is superior, and the surgeon should decide on the surgical method after careful consideration according to each clinical situation. This review will briefly describe the basic principles and current treatment concepts of C2 fractures.

석회암 내 방사상 발파균열을 예측하기 위한 동적파괴과정 해석법의 입력물성 결정법에 관한 연구 (Determining Parameters of Dynamic Fracture Process Analysis(DFPA) Code to Simulate Radial Tensile Cracks in Limestone Blast)

  • 김현수;강형민;정상선;김승곤;조상호
    • 화약ㆍ발파
    • /
    • 제31권2호
    • /
    • pp.6-13
    • /
    • 2013
  • 최근 채석장 및 광산의 파쇄설비로부터 발생되는 소음 및 분진에 의한 민원과 환경적인 문제가 대두되고 있으며, 이러한 파쇄설비를 지하공동으로 옮기는 사례가 증가하고 있다. 파쇄설비 및 가공시설을 갱내에 설치하기 위해서는 넓은 공간의 굴착이 이루어져야 하고, 대형공동 주변암반의 안정성이 확보되어야 한다. 지하공동 주변암반의 안정성은 굴착 시공 시 발생되는 굴착손상영역과 밀접한 관계가 있어, 최종파단면을 형성시키는 최외곽 발파공에 대한 정밀한 설계가 필요하다. 본 연구에서는 석회석 지하광산에서 대형공동 및 영구갱도 굴착시 발생 가능한 발파균열길이 및 손상영역을 예측하기 위한 수치해석기법을 제안하였다. 먼저 석회암블록에 대한 발파실험을 수행하고 발생된 인장균열수 및 길이를 분석하여, 동적파괴과정해석코드의 주요 입력변수인 평균 미시적 인장강도를 결정하였다.

겹치기 마찰교반접합 된 Al6061/HT590 합금의 기계적 특성 평가 (Evaluation of mechanical properties on friction stir lap jointed Al6061/HT590 alloys)

  • 김은혜;이광진;송국현
    • Journal of Welding and Joining
    • /
    • 제33권2호
    • /
    • pp.8-13
    • /
    • 2015
  • This study was carried out to evaluate mechanical properties of the jointed Al6061/HT590 alloys by friction stir welding (FSW). FSW was conducted under the conditions with tool rotating speed of 500 RPM and traveling speed of 300 mm/min., where Ar gas was introduced to prevent the materials from corrosion during the welding process. Electron back-scattering diffraction (EBSD) was used to characterize microstructures such as grain size, misorientation angle and crystal orientation. Evolution of intermetallic compounds in Al6061 during the process were examined in terms of morphology, size and aspect ratio at three distinct zones Al base material, heat affected zone and stir zone, where transmission electron microscope (TEM) was used. It was revealed that FSW gave rise to refinement of grains as well as growth of intermetallic compounds in Al6061. The morphological changes of intermetallic compounds exerted an influence on mechanical properties, resulting in occurrence of fracture in the part of the base material instead of the jointed parts (heat affected zone and stir zone). This study systematically evaluated the microstructural evolutions during the FSW for joining Al6061 with HT590 and their effect on mechanical properties.