• Title/Summary/Keyword: fracture process

Search Result 1,497, Processing Time 0.029 seconds

Prediction of fracture in Hub-hole Expansion Process Using Ductile fracture Criteria (연성파괴기준을 이용한 허브홀 확장과정에서의 파단 예측)

  • Ko, Y. K.;Lee, J. S.;Huh, H.;Kim, H. K.;Park, S. H.
    • Transactions of Materials Processing
    • /
    • v.14 no.7 s.79
    • /
    • pp.601-606
    • /
    • 2005
  • A hole expansion process is an important process in producing a hub-hole in a wheel disc of a vehicle. In this process, the main parameter is the formability of a material that is expressed as the hole expansion ratio. In the process, a crack is occurred in the upper edge of a hole as the hole is expanded. Since prediction of the forming limit by hole expansion experiment needs tremendous time and effort, an appropriate fracture criterion has to be developed for finite element analysis to define forming limit of the material. In this paper, the hole expansion process of a hub-hole is studied by finite element analysis with ABAQUS/standard considering several ductile fracture criteria. The fracture mode and hole expansion ratio are compared with respect to the various fracture criteria. These criteria do not predict its fracture mode or hole expansion ratio adequately and show deviation from experimental results of hole expansion. A modified ductile fracture criterion is newly proposed to consider the deformation characteristics of a material accurately in a hole expansion process. A fracture propagation analysis at the hub-hole edge is also performed for high accuracy of prediction using the new fracture criterion proposed.

Prediction of fracture in hub-hole expansion process using ductile fracture criteria (연성 파괴 기준을 이용한 허브 홀 확장 과정에서의 파단 예측)

  • Ko Y. K.;Lee J. S.;Huh H.;Kim H. K.;Park S. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.160-163
    • /
    • 2004
  • The hub hole in a wheel of vehicles usually formed with hole expansion process. Formability of material, especially the hole expansion ratio, is important to produce a fine hub hole. The hub hole expansion process is different from general forming process or bore expansion process in the viewpoint of forming a thick plate. In the hole expansion process of the plate with a hole, as the hole being expanded, the crack is occurred to outward direction at the boundary of a hole. Therefore, it is need to apply the fracture criterion in the hub hole expansion process. In this paper, the hub hole expansion process is simulated with commercial elasto-plastic finite element code, LS-DYNA3D considering some ductile fracture criteria. Fracture mode and hole expansion ratio is compared with respect to the fracture criteria. Analysis results demonstrate that only the effective plastic strain is not adequate to predict the fracture mode in the hub hole. And the analysis results also indicate that the ductile fracture criteria properly predict the fracture mode but hole expansion ratio is different with the result of each other because of their different characteristics.

  • PDF

A study on minimization of fracture surface in fine blanking process using factorial analysis (요인분석법을 이용한 파인 블랭킹 공정의 파단면 최소화에 관한 연구)

  • Lee, Beom-Soon;Kim, Ok-Hwan
    • Design & Manufacturing
    • /
    • v.15 no.1
    • /
    • pp.41-47
    • /
    • 2021
  • The Fine Blanking process is an effective precision shearing process that can obtain a smooth cutting surface and high product precision through a single blanking process. It is widely used in various manufacturing fields. However, shearing through this fine blanking process is only intended to minimize burrs, die rolls and fracture surfaces and does not completely remove them. Therefore, it is necessary to study the minimization of burrs, die rolls and fracture surfaces in the fine blanking process. In this study, a study was conducted on the relationship between the fracture surface and process conditions that occurred during product production using the fine blanking process. For this purpose, the shape of the V-ring indenter, the distance to the punch, and the pressure force, clearance, shear rate, and physical properties of the material were selected as process and design variables, and the relationship with the fracture surface according to each process and design condition was tested. It was analyzed through the Experimental Design Method.

Finite Element Modeling of Fracture Process Zone in Concrete (콘크리트 파괴진행영역의 유한요소모델링)

  • 송하원;변근주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.35-41
    • /
    • 1995
  • Fracture Mechanics does work for concrete, provided that a finite nonlinear zone at fracture front is being considered. The development of model for fracture process zone is most important to describe fracture phenomena in concrete. The fracture process zone is a region ahead of a traction-free crack, in which two major mechanisms, microcracking and bridging, play important rules. The toughness due to bridging is dominant compared to toughness induced by microcracking, so that the bridging is dominant mechanism governing the fracture process of concrete. In this paper the bridging zone, which is a part of extended macrocrack with stresses transmitted by aggregates in concrete, is model led by a Dugdale-Barenblatt type model with linear tension-softening curve. Two finite element techniques are shown for the model of fracture process zone in concrete.

  • PDF

Therapeutic effects of 1α,25 dihydroxycholecalciferol on osteoporotic fracture in a rat model (랫드에서 1α,25 dihydroxycholecalciferol의 골다공증성 골절 치유효과)

  • Bae, Chun-sik
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.5
    • /
    • pp.974-985
    • /
    • 1999
  • Osteoporosis is defined as a decrease in bone mass that leads to an increased risk of fracture. The therapeutic effect of $1{\alpha}$,25 dihydroxycholecalciferol, the hormonal form of vitamin $D_3$ that mediates calcium translation in intestine and bone, on the healing process of fracture has still been controversial. These studies were designed to understand the healing process of normal fibular fracture, the osteoporotic changes after ovariectomy, and the therapeutic effects of $1{\alpha}$,25 dihydroxycholecalciferol on the osteoporotic fracture in rats. The simple transverse fractures of rat fibulae were produced with a rotating diamond saw. The changes of the biochemical and mechanical indices of rats were investigated. The mechanical study based on bending test revealed the healing of the fibular fracture in the 5th week after simple transverse fracture. The osteoporosis impaired more the healing of osteoporotic fibular fracture than normal non-osteoporotic fibular fracture. The healing process of osteoporotic fracture was facilitated by the treatment with $1{\alpha}$,25 dihydroxycholecalciferol, however, was delayed more than the healing process of normal fracture. The bone strength based on the bending test also confirmed this tendency. The bone strengths in the 5th week after fracture of normal bone, osteoporotic bone, and $1{\alpha}$,25 dihydroxycholecalciferol-treated osteoporotic bone were 75%, 41%, and 67%, respectively, in comparison with those of intact bone. In conclusion, $1{\alpha}$,25 dihydroxycholecalciferol was effective in promoting the osteoporotic fracture healing.

  • PDF

Prediction of fracture in hub-hole expansion process using new ductile fracture criterion (새로운 연성파괴기준을 이용한 허브홀 확장과정에서의 파단 예측)

  • Ko Y. K.;Lee J. S.;Kim H. K.;Park S. H.;Huh H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.163-166
    • /
    • 2005
  • A hole expansion process is an important process in producing a hub-hole in a wheel disc of a vehicle. In this process, the main parameter is the formability of a material that is expressed as the hole expansion ratio. The hub-hole expansion process is different from conventional forming processes or hole flanging processes from the view-point of its deformation mode and forming of a thick plate. In the process, a crack is occurred in the upper edge of a hole as the hole is expanded. Since prediction of the forming limit by hole expansion experiment needs tremendous time and effort, an appropriate fracture criterion has to be developed fur finite element analysis to define forming limit of the material. In this paper, the hole expansion process of a hub-hole is studied by finite element analysis with ABAQUS/standard considering several ductile fracture criteria. The fracture mode and hole expansion ratio is compared with respect to the various fracture criteria. These criteria do not predict its fracture mode or hole expansion ratio adequately and show deviation from experimental results of hole expansion. A modified ductile fracture criterion is newly proposed to consider the deformation characteristics of a material accurately in a hole expansion process. A fracture propagation analysis at the hub-hole edge is also performed for high accuracy of prediction using the new fracture criterion proposed.

  • PDF

An analytical and computational study on energy dissipation along fracture process zone in concrete

  • Zhao, Yanhua;Xu, Shilang;Li, Zongjin
    • Computers and Concrete
    • /
    • v.1 no.1
    • /
    • pp.47-60
    • /
    • 2004
  • The influence of the fracture process zone (FPZ) on the fracture properties is one of the hottest topics in the field of fracture mechanics for cementitious materials. Within the FPZ in front of a traction free crack, cohesive forces are distributed in accordance with the softening stress-separation constitutive relation of the material. Therefore, further crack propagation necessitates energy dissipation, which is the work done by the cohesive forces. In this paper $g_f$, the local fracture energy characterizing the energy consumption due to the cohesive forces, is discussed. The computational expression of $g_f$ in the FPZ can be obtained for any stage during the material fracture process regarding the variation of FPZ, whether in terms of its length or width. $G_{fa}$, the average energy consumption along the crack extension region, has also been computed and discussed in this paper. The experimental results obtained from the wedge splitting tests on specimens with different initial notch ratios are employed to investigate the property of the local fracture energy $g_f$ and the average value $G_{fa}$ over the crack extension length. These results can be used to indicate the influence of the FPZ. Additionally, changes in the length of the FPZ during the fracture process are also studied.

Tool Fracture Detection in Milling Process (I) -Part 1 : Development of Tool Fracture Index- (밀링 공정시 공구 파손 검출 (I) -제1편 : 공구 파손 지수의 도출-)

  • 김기대;오영탁;주종남
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.5
    • /
    • pp.100-109
    • /
    • 1998
  • In order to increase productivity through unmanned machining in CNC milling process, in-process tool fracture detection is required. In this paper, a new algorithm for tool fracture detection using cutting load variations was developed. For this purpose, developed were tool condition vector which is dimensionless indicator of cutting load and tool fracture index (TFI) which represents magnitude of tool fracture. Through cutting force simulation, tool fracture index was shown to be independent of tool run-outs and cutting condition variations. Using tool fracture index, the ratio of the tool fracture to feed per tooth could be indentified.

  • PDF

Dynamic Fracture Properties of Modified S-FPZ Model for Concrete

  • Yon, Jung-Heum;Seo, Min-Kuk
    • International Journal of Concrete Structures and Materials
    • /
    • v.19 no.1E
    • /
    • pp.25-32
    • /
    • 2007
  • The fracture energy evaluated from the previous experimental results can be simulated by using the modified singular fracture process zone (S-FPZ) model. The fracture model has two fracture properties of strain energy release rate for crack extension and crack close stress versus crack width relationship $f_{ccs}(w)$ for fracture process zone (FPZ) development. The $f_{ccs}(w)$ relationship is not sensitive to specimen geometry and crack velocity. The fracture energy rate in the FPZ increases linearly with crack extension until the FPZ is fully developed. The fracture criterion of the strain energy release rate depends on specimen geometry and crack velocity as a function of crack extension. The behaviors of micro-cracking, micro-crack localization and full development of the FPZ in concrete can be explained theoretically with the variation of strain energy release rate with crack extension.

Fracture Analysis of Concrete Cylinder by Boundary Element Method (경계요소법에 의한 콘크리트 원통형관의 파괴해석)

  • 송하원;전재홍;변근주
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.171-177
    • /
    • 1995
  • Fracture mechanics does work for concrete, provided that one uses a proper, nonlinear form of fracture mechanics in which a finite nonlinear zone at fracture front is being considered. The fracture process zone is a region ahead of a traction-free crack, and the development of model of fracture process zone is most important to describe fracture phenomena in concrete. This paper is about fracture behavior of concrete cylinder under lateral pressure. Concrete cylinders were made of high strength normal connote, steel fiber reinforced concrete and steel fiber reinforced polymer-impregnated concrete and concrete and the fracture behavior such as cracking propagation and ultimate load are observed. The fracture process zone is modelled by a Dugdale-Barenblatt type model with linear tension-softening curve and are implemented to the boundary element technique for the fracture analyses of the cylinders. The experimental results are compared with analysis results and tension-softening curves for the steel fiber reinforced concrete and steel fiber reinforced polymer-impregnated concrete are obtained by back analyses.

  • PDF