• 제목/요약/키워드: fracture model

검색결과 1,291건 처리시간 0.026초

접착영역모델을 이용한 클린칭 접합부의 해석 모델 설계 및 적용 (Analysis and Application of Mechanical Clinched Joint Using Cohesive Zone Model)

  • 황빛나;이찬주;이선봉;김병민
    • 소성∙가공
    • /
    • 제19권4호
    • /
    • pp.217-223
    • /
    • 2010
  • The objective of this study is to propose the FE model for mechanical clinched joint using cohesive zone model to analyze its failure behavior under impact loading. Cohesive zone model (CZM) is two-parameter failure criteria approach, which could describe the failure behavior of joint using critical stress and fracture toughness. In this study, the relationship between failure behavior of mechanical clinched joint and fracture parameters is investigated by FE analysis with CZM. Using this relationship, the critical stress and fracture toughness for tensile and shear mode are determined by H-type tensile test and lap shear test, which were made of 5052 aluminum alloy. The fracture parameters were applied to the tophat impact test to evaluate the crashworthiness. Compared penetration depth and energy absorption at the point where 50% of total displacement in result of FE analysis and experiment test for impact test, those has shown similar crashworthiness.

Failure simulation of ice beam using a fully Lagrangian particle method

  • Ren, Di;Park, Jong-Chun;Hwang, Sung-Chul;Jeong, Seong-Yeob;Kim, Hyun-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.639-647
    • /
    • 2019
  • A realistic numerical simulation technology using a Lagrangian Fluid-Structure Interaction (FSI) model was combined with a fracture algorithm to predict the fluid-ice-structure interaction. The failure of ice was modeled as the tensile fracture of elastic material by applying a novel FSI model based on the Moving Particle Semi-implicit (MPS) method. To verify the developed fracture algorithm, a series of numerical simulations for 3-point bending tests with an ice beam were performed and compared with the experiments carried out in an ice room. For application of the developed FSI model, a dropping water droplet hitting a cantilever ice beam was simulated with and without the fracture algorithm. The simulation showed that the effects of fracture which can occur in the process of a FSI simulation can be studied.

선형 및 비선형 손상 발전 모델을 이용한 고장력강(EH36)의 연성 파단 예측 (Ductile Fracture Predictions of High Strength Steel (EH36) using Linear and Non-Linear Damage Evolution Models)

  • 박성주;박병재;정준모
    • 한국해양공학회지
    • /
    • 제31권4호
    • /
    • pp.288-298
    • /
    • 2017
  • A study of the damage evolution laws for ductile materials was carried out to predict the ductile fracture behavior of a marine structural steel (EH36). We conducted proportional and non-proportional stress tests in the experiments. The existing 3-D fracture strain surface was newly calibrated using two fracture parameters: the average stress triaxiality and average normalized load angle taken from the proportional tests. Linear and non-linear damage evolution models were taken into account in this study. A damage exponent of 3.0 for the non-linear damage model was determined based on a simple optimization technique, for which proportional and non-proportional stress tests were simultaneously used. We verified the validity of the three fracture models: the newly calibrated fracture strain model, linear damage evolution model, and non-linear damage evolution model for the tensile tests of the asymmetric notch specimens. Because the stress evolution pattern for the verification tests remained at mode I in terms of the linear elastic fracture mechanics, the three models did not show significant differences in their fracture initiation predictions.

변형률 속도를 고려한 유한요소 기반 연성 찢김 해석 기법 개발 (Development of Finite Element Ductile Tearing Simulation Model Considering Strain Rate Effect)

  • 남현석;김지수;김진원;김윤재
    • 대한기계학회논문집A
    • /
    • 제40권2호
    • /
    • pp.167-173
    • /
    • 2016
  • 본 논문은 유한요소해석을 이용한 고변형률 조건에서의 연성파손 해석기법을 제안한다. 고변형률 하중이 작용하는 구조물에 대한 파괴거동 예측을 위해 본 논문에서는 Johnson/Cook 모델을 고려한 수정응력 파괴변형률 모델을 사용하였다. 제시된 모델은 인장 실험 모사해석결과로부터 얻어지는 삼축응력 및 파괴변형률에 의해 파손이 정의된다. 다양한 실험속도의 인장 실험결과 및 정적 하중조건에서의 파괴인성 실험을 이용하여 수정응력 파괴변형률 모델의 변수를 결정하였다. 결정된 모델을 이용하여 동적하중조건에서 파괴인성시편에 대한 해석을 수행하였으며 해석결과와 실험결과를 비교하여 해석기법을 검증하였다.

초기재령 콘크리트의 파괴특성 (Fracture Characteristics of Concrete at Early Ages)

  • 이윤;김진근
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.215-220
    • /
    • 2001
  • The objective of this study is to examine the fracture characteristics of concrete at early ages such as critical stress intensity factor, critical crack-tip opening displacement, fracture energy based on the concepts of the effective-elastic crack model and the cohesive crack model. A wedge splitting test for Mode I was performed on cubic wedge specimens with a notch at the edge. By varying strength and age, load-crack mouth opening displacement curves were obtained and the results were analyzed by linear elastic fracture mechanics. The results from the test and analysis showed that critical stress intensity factor and fracture energy increased, and critical crack-tip opening displacement decreased with concrete age from 1 day to 28 days. The obtained fracture parameters at early ages may be used as a fracture criterion and an input data for finite element analysis of concrete at early ages.

  • PDF

Al 7175 합금의 정적 파괴인성에 미치는 노치반경 영향 (Notch Radius Effect for Static Fracture Toughness of Al 7175 Alloys)

  • 김재훈;김덕회;박성욱;문순일
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2002년도 제18회 학술발표대회 논문초록집
    • /
    • pp.84-87
    • /
    • 2002
  • In this study, intrinsic fracture toughness of Al 7175-T74 is evaluated from the apparent toughness of notched specimen. Modified average stress model is used to establish the relationship to predict the intrinsic fracture toughness from the apparent fracture toughness of a notched-cracked specimen. The modified average stress model is established the relation between notch radius and effective distance calculated by FEM analysis. The results show that fracture toughness decreases with decreasing of notch root radius. The true fracture toughness can be predicted from test results of apparent fracture toughness measured by using notched specimen.

  • PDF

콘크리트의 연속적인 균열성장에 대한 수정 특이-파괴진행대 이론 (Modified S-FPZ Model for a Running Crack in Concrete)

  • 연정흠
    • 콘크리트학회논문집
    • /
    • 제15권6호
    • /
    • pp.802-810
    • /
    • 2003
  • 이 논문에서는 균열성장에 따른 파괴기준의 변화를 고려할 수 있는 수정 특이-파괴진행대 이론이 제안되었다. 제안된 파괴이론의 파괴특성은 균열의 성장기준이 되는 미소균열단에서 에너지해방률과 미소균열단 뒤에 형성되는 파괴진행대에서 균열면 응력-변위 관계이다. 제안된 파괴이론에 의한 파괴에너지는 기존의 콘크리트 파괴실험 결과로부터 평가된 파괴에너지를 충분히 만족할 수 있었다. 실험자료의 분석결과는 파괴진행대에서 균열면 응력-변위 관계는 시험편의 기하학적 특성에 큰 영형을 받지 않으나, 에너지해방률의 파괴기준은 시험편의 기하학적 특성과 하중조건뿐만 아니라 균열성장길이에 영향을 받는 것을 보여준다. 25mm의 균열성장까지 일정한 값을 유지하던 에너지해방률은 균열성장에 대해 선형으로 최대 값까지 증가하였다. 충분한 크기의 시험편에서 최대 에너지해방률은 최대하중에서 발생되었으며, 최대하중 이후의 균열성장에 대해 이 값을 유지하였다. 균열성장에 따른 파괴기준의 변화는 미소균열의 성장과 국부화에 의한 것으로 판단된다. 에너지해방률에 의한 파괴기준의 평가는 콘크리트 파괴거동의 크기효과를 단순화하며, 미소균열의 성장과 국부화에 대한 정량화에 사용될 수 있을 것으로 기대된다.

A Study on Mesh Sensitivity of 3-D Homoginized Crack Model for Concrete Fracture Analysis

  • 남진원;송하원;변근주;방춘석
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 춘계 학술발표회 제16권1호
    • /
    • pp.462-465
    • /
    • 2004
  • Since quasi-brittle materials like concrete show strain localization behavior accompanied by strain softening, a numerical drawback such as mesh sensitivity is appeared in the finite element analysis. In this paper, the so-called homogenized crack model which was introduced for three dimensional finite element analysis of fracture in concrete is studied for the mesh size dependence problem in fracture analysis. A homogenized crack element having a velocity discontinuity. is averaged to remove the mesh sensitivity in finite element analysis of concrete fracture. Numerical examples show that softening behavior of concrete fracture is successfully predicted without mesh sensitivity using the homogenized crack model.

  • PDF

Fracture process of rubberized concrete by fictitious crack model and AE monitoring

  • Wang, Chao;Zhang, Yamei;Zhao, Zhe
    • Computers and Concrete
    • /
    • 제9권1호
    • /
    • pp.51-61
    • /
    • 2012
  • According to the results of three-point bending tests of rubberized concrete and plain concrete, the parameters such as total fracture energy ($G_F$), initial fracture energy ($G_f$), and tensile strength ($f_t$) are obtained for concrete material. Using ABAQUS software and a bilinear softening fictitious crack model, the crack propagation process was simulated and compared to the experimental results. It is found that the increase of AE hit count has a similar trend with the increase of energy dissipation in FEM simulation. For two types of concretes, both experimental results and numerical simulation indicate that the rubberized concrete has a better fracture resistance.

A coupled damage-viscoplasticity model for the analysis of localisation and size effects

  • Georgin, J.F.;Sluys, L.J.;Reynouard, J.M.
    • Computers and Concrete
    • /
    • 제1권2호
    • /
    • pp.169-188
    • /
    • 2004
  • A coupled damage-viscoplasticity model is presented for the analysis of localisation and size effects. On one hand, viscosity helps to avoid mesh sensitivity because of the introduction of a length scale in the model and, on the other hand, enables to represent size effects. Size effects were analysed by means of three-point bending tests. Correlation between the fracture energy parameter measured experimentally and the density fracture energy modelling parameter is discussed. It has been shown that the dependence of nominal strength and fracture energy on size is determined by the ligament length in comparison with the width of the fracture process zone.