• Title/Summary/Keyword: fractional order time derivative

Search Result 25, Processing Time 0.024 seconds

THE FUNDAMENTAL SOLUTION OF THE SPACE-TIME FRACTIONAL ADVECTION-DISPERSION EQUATION

  • HUANG F.;LIU F.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.339-350
    • /
    • 2005
  • A space-time fractional advection-dispersion equation (ADE) is a generalization of the classical ADE in which the first-order time derivative is replaced with Caputo derivative of order $\alpha{\in}(0,1]$, and the second-order space derivative is replaced with a Riesz-Feller derivative of order $\beta{\in}0,2]$. We derive the solution of its Cauchy problem in terms of the Green functions and the representations of the Green function by applying its Fourier-Laplace transforms. The Green function also can be interpreted as a spatial probability density function (pdf) evolving in time. We do the same on another kind of space-time fractional advection-dispersion equation whose space and time derivatives both replacing with Caputo derivatives.

THE SPACE-TIME FRACTIONAL DIFFUSION EQUATION WITH CAPUTO DERIVATIVES

  • HUANG F.;LIU F.
    • Journal of applied mathematics & informatics
    • /
    • v.19 no.1_2
    • /
    • pp.179-190
    • /
    • 2005
  • We deal with the Cauchy problem for the space-time fractional diffusion equation, which is obtained from standard diffusion equation by replacing the second-order space derivative with a Caputo (or Riemann-Liouville) derivative of order ${\beta}{\in}$ (0, 2] and the first-order time derivative with Caputo derivative of order ${\beta}{\in}$ (0, 1]. The fundamental solution (Green function) for the Cauchy problem is investigated with respect to its scaling and similarity properties, starting from its Fourier-Laplace representation. We derive explicit expression of the Green function. The Green function also can be interpreted as a spatial probability density function evolving in time. We further explain the similarity property by discussing the scale-invariance of the space-time fractional diffusion equation.

TIME FRACTIONAL ADVECTION-DISPERSION EQUATION

  • Liu, F.;Anh, V.V.;Turner, I.;Zhuang, P.
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.233-245
    • /
    • 2003
  • A time fractional advection-dispersion equation is Obtained from the standard advection-dispersion equation by replacing the firstorder derivative in time by a fractional derivative in time of order ${\alpha}$(0 < ${\alpha}$ $\leq$ 1). Using variable transformation, Mellin and Laplace transforms, and properties of H-functions, we derive the complete solution of this time fractional advection-dispersion equation.

Fractional wave propagation in radially vibrating non-classical cylinder

  • Fadodun, Odunayo O.;Layeni, Olawanle P.;Akinola, Adegbola P.
    • Earthquakes and Structures
    • /
    • v.13 no.5
    • /
    • pp.465-471
    • /
    • 2017
  • This work derives a generalized time fractional differential equation governing wave propagation in a radially vibrating non-classical cylindrical medium. The cylinder is made of a transversely isotropic hyperelastic John's material which obeys frequency-dependent power law attenuation. Employing the definition of the conformable fractional derivative, the solution of the obtained generalized time fractional wave equation is expressed in terms of product of Bessel functions in spatial and temporal variables; and the resulting wave is characterized by the presence of peakons, the appearance of which fade in density as the order of fractional derivative approaches 2. It is obtained that the transversely isotropic structure of the material of the cylinder increases the wave speed and introduces an additional term in the wave equation. Further, it is observed that the law relating the non-zero components of the Cauchy stress tensor in the cylinder under consideration generalizes the hypothesis of plane strain in classical elasticity theory. This study reinforces the view that fractional derivative is suitable for modeling anomalous wave propagation in media.

Fractional order optimal control for biological model

  • Mohamed Amine Khadimallah;Shabbir Ahmad;Muzamal Hussain;Abdelouahed Tounsi
    • Computers and Concrete
    • /
    • v.34 no.1
    • /
    • pp.63-77
    • /
    • 2024
  • In this research, we considered fractional order optimal control models for cancer, HIV treatment and glucose.These models are based on fractional order differential equations that describe the dynamics underlying the disease.It is formulated in term of left and right Caputo fractional derivative. Pontryagin's Maximum Principle is used as a necessary condition to find the optimal curve for the respective controls over fixed time period. The formulated problems are numerically solved using forward backward sweep method with generalized Euler scheme.

Electromagnetic Strip Stabilization Control in a Continuous Galvanizing Line using Mixture of Gaussian Model Tuned Fractional PID Controller (비정수 차수를 갖는 비례적분미분제어법과 가우시안 혼합모델을 이용한 연속아연도금라인에서의 전자기 제진제어 기술)

  • Koo, Bae-Young;Won, Sang-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.718-722
    • /
    • 2015
  • This paper proposes a fractional-order PID (Proportional-Integral-Derivative) control used electromagnetic strip stabilization controller in a continuous galvanizing line. Compared to a conventional PID controller, a fractional-order PID controller has integration-fractional-order and derivation-fractional-order as additional control parameters. Thanks to increased control parameters, more precise controller adjustment is available. In addition, accurate transfer function of a real system generally has a fractional-order form. Therefore, it is more adequate to use a fractional-order PID controller than a conventional PID controller for a real world system. Finite element models of a $1200{\times}2000{\times}0.8mm$ strip, which were extracted using a commercial software ANSYS were used as simulation plants, and Gaussian mixture models were used to find optimized control parameters that can reduce the strip vibrations to the lowest amplitude. Simulation results show that a fractional-order PID controller significantly reduces strip vibration and transient response time than a conventional PID controller.

ASYMPTOTIC BEHAVIORS OF FUNDAMENTAL SOLUTION AND ITS DERIVATIVES TO FRACTIONAL DIFFUSION-WAVE EQUATIONS

  • Kim, Kyeong-Hun;Lim, Sungbin
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.929-967
    • /
    • 2016
  • Let p(t, x) be the fundamental solution to the problem $${\partial}^{\alpha}_tu=-(-{\Delta})^{\beta}u,\;{\alpha}{\in}(0,2),\;{\beta}{\in}(0,{\infty})$$. If ${\alpha},{\beta}{\in}(0,1)$, then the kernel p(t, x) becomes the transition density of a Levy process delayed by an inverse subordinator. In this paper we provide the asymptotic behaviors and sharp upper bounds of p(t, x) and its space and time fractional derivatives $$D^n_x(-{\Delta}_x)^{\gamma}D^{\sigma}_tI^{\delta}_tp(t,x),\;{\forall}n{\in}{\mathbb{Z}}_+,\;{\gamma}{\in}[0,{\beta}],\;{\sigma},{\delta}{\in}[0,{\infty})$$, where $D^n_x$ x is a partial derivative of order n with respect to x, $(-{\Delta}_x)^{\gamma}$ is a fractional Laplace operator and $D^{\sigma}_t$ and $I^{\delta}_t$ are Riemann-Liouville fractional derivative and integral respectively.

Fractional order thermoelastic wave assessment in a two-dimension medium with voids

  • Hobiny, Aatef D.;Abbas, Ibrahim A.
    • Geomechanics and Engineering
    • /
    • v.21 no.1
    • /
    • pp.85-93
    • /
    • 2020
  • In this article, the generalized thermoelastic theory with fractional derivative is presented to estimate the variation of temperature, the components of stress, the components of displacement and the changes in volume fraction field in two-dimensional porous media. Easily, the exact solutions in the Laplace domain are obtained. By using Laplace and Fourier transformations with the eigenvalues method, the physical quantities are obtained analytically. The numerical results for all the physical quantities considered are implemented and presented graphically. The results display that the present model with the fractional derivative is reduced to the Lord and Shulman (LS) and the classical dynamical coupled (CT) theories when the fractional parameter is equivalent to one and the delay time is equal to zero and respectively.

A FRACTIONAL-ORDER TUMOR GROWTH INHIBITION MODEL IN PKPD

  • Byun, Jong Hyuk;Jung, Il Hyo
    • East Asian mathematical journal
    • /
    • v.36 no.1
    • /
    • pp.81-90
    • /
    • 2020
  • Many compartment models assume a kinetically homogeneous amount of materials that have well-stirred compartments. However, based on observations from such processes, they have been heuristically fitted by exponential or gamma distributions even though biological media are inhomogeneous in real environments. Fractional differential equations using a specific kernel in Pharmacokinetic/Pharmacodynamic (PKPD) model are recently introduced to account for abnormal drug disposition. We discuss a tumor growth inhibition (TGI) model using fractional-order derivative from it. This represents a tumor growth delay by cytotoxic agents and additionally show variations in the equilibrium points by the change of fractional order. The result indicates that the equilibrium depends on the tumor size as well as a change of the fractional order. We find that the smaller the fractional order, the smaller the equilibrium value. However, a difference of them is the number of concavities and this indicates that TGI over time profile for fitting or prediction should be determined properly either fractional order or tumor sizes according to the number of concavities shown in experimental data.

Position Controller Implementation Using the Fractional Order Derivative (유리차수 미분을 이용한 위치제어기 구현)

  • Kang, Jung-Yoog;Jeon, Yong-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.185-190
    • /
    • 2019
  • This study aims to apply the mathematical method of fractional order derivatives to the controller that controls the system response. In general, the Laplace transform of the PID controller has an exponent of the integer order of s. The derivative of the fractional order has a fractional exponent of s when it is transformed by Laplace transform. Therefore, this controller proposes a design method with the result of discrete time conversion. Because controllers with fractional exponents of s are not easy to design. This controller is applied to a standard secondary system and its performance is examined. Then, it applies to solenoid valve which is widely used in industrial field. A Luenberger's observer was designed to estimate the disturbance state and the observed state was applied to the fractional order controller. As a result, uniform and precise control performance was obtained. It was confirmed that the position error of the steady state is within 0.1 [%] and the rising time is within about 0.03 [s].