• 제목/요약/키워드: fourth-order linear moment method

검색결과 4건 처리시간 0.018초

분포하중(分布荷重)을 받는 구형판(矩形板)의 탄성해석(彈性解析) (Analysis of Rectangular Plates under Distributed Loads of Various Intensity with Interior Supports at Arbitrary Positions)

  • 장석윤
    • 대한조선학회지
    • /
    • 제13권1호
    • /
    • pp.17-23
    • /
    • 1976
  • Some methods of analysis of rectangular plates under distributed load of various intensity with interior supports are presented herein. Analysis of many structures such as bottom, side shell, and deck plate of ship hull and flat slab, with or without internal supports, Floor systems of bridges, included crthotropic bridges is a problem of plate with elastic supports or continuous edges. When the four edges of rectangular plate is simply supported, the double Fourier series solution developed by Navier can represent an exact result of this problem. If two opposite edges are simply supported, Levy's method is available to give an "exact" solution. When the loading condition and supporting condition of a plate does not fall into these cases, no simple analytic method seems to be feasible. Analysis of a simply supported rectangular plate under irregularly distributed loads of various intensity with internal supports is carried out by applying Navier solution well as the "Principle of Superposition." Finite difference technique is used to solve plates under irregularly distributed loads of various intensity with internal supports and with various boundary conditions. When finite difference technique is applied to the Lagrange's plate bending equation, any of fourth order derivative term in this equation produces at least five pivotal points leading to some troubles when the resulting linear algebraic equations are to be solved. This problem was solved by reducing the order of the derivatives to two: the fourth order partial differential equation with one dependent variable, namely deflection, is changed to an equivalent pair of second order partial differential equations with two dependent variables. Finite difference technique is then applied to transform these equations to a set of simultaneous linear algebraic equations. Principle of Superposition is then applied to handle the problems caused by concentrated loads and interior supports. This method can be used for the cases of plates under irregularly distributed loads of various intensity with arbitrary conditions such as elastic supports, or continuous edges with or without interior supports, and this method can also be solve the influence values of deflection, moment and etc. at arbitrary position of plates under the live load.

  • PDF

Analysis of free vibration of beam on elastic soil using differential transform method

  • Catal, Seval
    • Structural Engineering and Mechanics
    • /
    • 제24권1호
    • /
    • pp.51-62
    • /
    • 2006
  • Differential transform method (DTM) for free vibration analysis of both ends simply supported beam resting on elastic foundation is suggested. The fourth order partial differential equation for free vibration of the beam resting on elastic foundation subjected to bending moment, shear and axial compressive load is obtained by using Winkler hypothesis and small displacement theory. It is assumed that the material is linear-elastic, and that axial load and modulus of subgrade reaction to be constant. In the analysis, shear and axial load effects are considered. The frequency factors of the beam are calculated by using DTM due to the values of relative stiffness; the results are presented in graphs and tables.

4계 타원형 미분 방정식을 위한 웨이블릿 급수해석 (The Wavelet Series Analysis for the Fourth-order Elliptic Differential Equation)

  • 조준형;우광성;신영식
    • 한국전산구조공학회논문집
    • /
    • 제24권4호
    • /
    • pp.355-364
    • /
    • 2011
  • 본 논문은 이미지 처리나 신호처리 및 정보압축 등에 사용되는 웨이블릿 급수를 이용하여 4계 타원형 미분방정식을 풀때 그 방법에 대하여 논의하고자 한다. 본 논문에서 사용한 Hat 웨이블릿 함수는 $H^1$-공간에 속한 급수로서 일반적으로 2계 타원형 미분방정식에 적용하기에는 무리가 없으나 4계 타원형 미분방정식에 적용하기에는 불충분한 미분가능회수를 가지고 있다. 따라서 이 문제를 극복하기 위해 모멘트와 처짐을 미지수로 하는 선형방정식을 순차적으로 구성하고 풀어내는 방법을 사용하였다. 모멘트와 처짐을 미지수로 하는 순차적 해석법은 탄성하중법(모멘트면적법)의 응용으로 생각할 수 있다. 또한 그 정식화과정에서 무요소법과 동일한 점과 차이점을 언급하였다. 예측한 바와 같이 Hat 웨이블릿 함수의 항을 많이 고려할수록 수치해석의 해가 향상되는 것을 확인할 수 있었다. 또한 응력특이를 갖는 오일러보 문제의 경우 제안된 해석법은 종래의 유한요소 해석값과도 비교되었다.

Quantification of nonlinear seismic response of rectangular liquid tank

  • Nayak, Santosh Kumar;Biswal, Kishore Chandra
    • Structural Engineering and Mechanics
    • /
    • 제47권5호
    • /
    • pp.599-622
    • /
    • 2013
  • Seismic response of two dimensional liquid tanks is numerically simulated using fully nonlinear velocity potential theory. Galerkin-weighted-residual based finite element method is used for solving the governing Laplace equation with fully nonlinear free surface boundary conditions and also for velocity recovery. Based on mixed Eulerian-Lagrangian (MEL) method, fourth order explicit Runge-Kutta scheme is used for time integration of free surface boundary conditions. A cubic-spline fitted regridding technique is used at every time step to eliminate possible numerical instabilities on account of Lagrangian node induced mesh distortion. An artificial surface damping term is used which mimics the viscosity induced damping and brings in numerical stability. Four earthquake motions have been suitably selected to study the effect of frequency content on the dynamic response of tank-liquid system. The nonlinear seismic response vis-a-vis linear response of rectangular liquid tank has been studied. The impulsive and convective components of hydrodynamic forces, e.g., base shear, overturning base moment and pressure distribution on tank-wall are quantified. It is observed that the convective response of tank-liquid system is very much sensitive to the frequency content of the ground motion. Such sensitivity is more pronounced in shallow tanks.