• 제목/요약/키워드: fourth industry

검색결과 1,340건 처리시간 0.037초

한·중 FTA가 항공운송 부문에 미치는 영향과 우리나라 항공정책의 방향 (The Effect on Air Transport Sector by Korea-China FTA and Aviation Policy Direction of Korea)

  • 이강빈
    • 항공우주정책ㆍ법학회지
    • /
    • 제32권1호
    • /
    • pp.83-138
    • /
    • 2017
  • 한 중 FTA가 2015년 12월 20일 발효되었고, 우리나라 제1위의 교역상대국인 중국과의 FTA로서 발효된 후 1년이 경과하였다. 따라서 본 연구에서는 한국과 중국 간 항공운송 교역 동향을 살펴보고, 한 중 FTA의 항공운송서비스 부문에 대한 양허내용을 검토하고, 항공운송 부문에 미치는 영향을 분석하며, 이에 대응하기 위한 우리나라 항공정책의 방향을 도출하여 제시하고자 한다. 2016년 한 중 간 항공운송 교역 동향을 살펴보면, 대중국 항공운송 수출액은 전년대비 9.3% 감소한 400.3억 달러로서, 대중국 전체 수출액의 32.2%를 차지하고 있다. 대중국 항공운송 수입액은 전년대비 9.1% 감소한 242.6억 달러로서, 대중국 전체 수입액의 27.7%를 차지하고 있다. 한 중 FTA의 항공운송서비스 부문 양허내용을 검토해 보면, 중국은 한 중 FTA 협정문 제8장 부속서 중국의 양허표에서 항공운송서비스 분야의 항공기 보수 및 유지 서비스, 컴퓨터 예약시스템(CRS)서비스에 대하여 시장접근과 내국민대우에 대한 제한을 두고 양허하였다. 한국은 한 중 FTA 협정문 제8장 부속서 한국의 양허표에서 항공운송서비스 분야의 컴퓨터 예약시스템서비스, 항공운송서비스의 판매 및 마케팅, 항공기 유지 및 보수 서비스에 대하여 시장접근과 내국민대우에 대한 제한을 두지 않고 양허하였다. 한 중 FTA가 항공운송 부문에 미치는 영향을 분석해 보면, 항공여객시장에 미친 영향으로, 2016년 국제선 중국노선 도착여객은 996만 명으로 전년대비 20.6% 증가하였고, 출발여객은 990만 명으로 전년대비 34.8% 증가하였다. 항공화물시장에 미친 영향으로, 2016년 대중국 항공화물 수출물동량은 105,220.2톤으로 전년대비 6.6% 증가하였고, 수입물동량은 133,750.9톤으로 전년대비 12.3% 증가하였다. 대중국 수출 항공화물 주요품목가운데 한 중 FTA 협정문 중국 관세양허표 상 수혜품목의 수출물동량이 증가하였고, 대중국 수입항공화물 주요품목가운데 한 중 FTA 한국 관세양허표 상 수혜품목의 수입물 동량이 증가하였다. 항공물류시장에 미친 영향으로 2016년 국내 포워더의 대중국 수출 항공화물 취급실적은 119,618톤으로 전년대비 2.1% 감소하였고, 대중국 수입 항공화물 취급실적은 79,430톤으로 전년대비 4.4% 감소하였다. 2016년 대중국 역직구(전자상거래 수출) 수출금액은 1억 916만 달러로 전년대비 27.7% 증가하였고, 대중국직구(전자상거래 수입) 수입금액은 8,943만 달러로 전년대비 72% 증가하였다. 한 중 FTA에 따른 우리나라 항공정책의 방향을 도출하여 제시해 보면 다음과 같다. 첫째 한 중 간에 항공자유화를 추진한다. 한국과 중국은 2006년 6월 중국의 산동성과 해남성에 대해 여객 및 화물 제3자유 및 제4자유를 범위로 하는 항공자유화 협정을 체결하였으며, 2010년 하계부터 양국 간 항공운항을 전면 자유화하기로 합의하였으나, 중국 측에서 항공협정 양해각서 문안의 해석 상 이의를 제기함에 따라 추가적인 항공자유화는 이루어지지 못하고 있다. 한 중 FTA와는 별도의 항공회담을 통해 중국과의 점진적 선별적 항공여객시장 및 화물시장의 항공자유화를 추진해야 할 것이다. 둘째 항공운송산업 및 공항의 경쟁력을 확보해야 한다. 한국의 항공운송산업 경쟁력의 강화방안으로 국적항공사 경쟁력의 강화를 위한 지원체계를 마련하며, 국적항공사의 새로운 공정경쟁의 기반을 조성하며, 국익기반 전략적 네트워크를 구축해야 할 것이다. 한국의 공항 특히 인천공항의 경쟁력 강화방안으로 항공수요 창출 네트워크 경쟁력을 강화하며, 공항시설과 안전인프라를 확충하며, 공항을 통한 새로운 부가가치를 창출하며, 세계 1위 수준의 서비스 수준을 유지해야 할 것이다. 셋째 항공물류업의 경쟁력을 강화한다. 한국의 항공물류업 경쟁력의 강화방안으로 산업트렌드 변화에 대응한 고부가가치 물류산업의 육성전략으로 신규 물류시장을 개척하며, 물류인프라를 확충하며, 물류전문인력을 양성한다. 또한 글로벌 물류시장의 확대전략으로 물류기업의 해외투자 지원체계를 구축하며, 글로벌 운송네트워크 확장에 따른 국제협력 강화 및 인프라를 확보해야 할 것이다. 인천공항 항공물류 경쟁력의 강화방안으로 기업의 물류단지 입주수요에 대응하며, 신 성장 화물분야의 비교우위 선점을 하며, 물류허브 역량을 강화하며, 공항 내 화물처리속도 경쟁력을 향상해야 할 것이다. 넷째 한 중 FTA 후속 협상에서 항공운송서비스 분야의 추가 개방을 확보한다. 한 중 FTA 발효 후 2년 내에 개시될 후속 협상에서 중국 측 항공운송서비스 분야의 양허수준이 중국의 기체결 FTA에 비해 미흡한 분야인 컴퓨터 예약시스템서비스 및 항공기 보수 및 유지 서비스의 양허에 대해 추가 개방을 요구하는 것이 필요할 것이다. 결론적으로 한 중 FTA가 우리나라 항공여객시장, 항공화물시장 및 항공물류시장에 미치는 영향에 대응하여 추진해야 할 정책과제로서, 국적항공사의 경쟁력과 국민 편익을 고려하여 중국과의 점진적 선별적 항공자유화를 추진하며, 항공운송산업과 공항의 경쟁력 강화를 위한 지원체계를 구축하며, 물류기업들의 항공물류시장 진출을 확대하며, 중국 측 양허수준이 낮은 항공운송서비스 분야의 추가 개방 요구를 위한 준비를 해야 할 것이다.

  • PDF

전시장 참관객의 계획되지 않은 방문행동에 있어서 부스추천시스템의 영향에 대한 연구 (A Study on the Effect of Booth Recommendation System on Exhibition Visitors Unplanned Visit Behavior)

  • 정남호;김재경
    • 지능정보연구
    • /
    • 제17권4호
    • /
    • pp.175-191
    • /
    • 2011
  • 국가신성장동력으로MICE(Meeting, Incentive travel, Convention, Exhibition) 산업이각광받으면서국내전시산업에 대한 관심이 드높아 지고 있다. 이에 따라 국내 전시산업(domestic exhibition industry)도 미국이나 유럽과 같이 전시성과를 향상시키기 위한 다양한 연구가 진행 중이다. 그 중에서도 전시환경이나 전시기법 등에 따라 관람효과가 다르기 때문에 지능형 정보기술을 이용하여 전시장에 방문한 참관객의 참관패턴을 분석하여 참관객을 이해하고 더 나아가 참여업체 간의 연관관계 도출 및 전시회의 성과를 높이고자 하는 연구들이 진행되고 있다. 그런데, 이러한 기존의 부스추천시스템과 관련된 연구를 살펴보면 시스템적인 관점에서 추천의 정확성만을 논하고 있을 뿐 추천을 통한 참관객의 행동이나 인식의 변화에 대해서는 충분히 논의하고 있지 못하다. 부스추천시스템(Booth Recommendation System)은 참관객의 부스방문 정보를 바탕으로 참관객에게 적절한 부스를 추천하기 때문에 참관객은 사전에 계획하지 않은 전시장을 방문하게 될 수 있다. 이 때 참관객은 계획하지 않은 방문행동을 통해서 만족할 수도 있지만 추천과 정이 번거롭다거나 자유롭게 참관을 하는데 방해가 된다고 생각할 수 있다. 이 경우 참관객의 자유로운 관람보다 오히려 더 좋지 않은 성과를 낼 수 있다. 따라서 부스 추천시스템을 전시장에 적용하기 위해서는 시스템의 성과에 미치는 영향요인이 무엇인지 전반적으로 검토하고, 부스추천시스템이 참관객의 계획되지 않은 방문행동에 미치는 영향에 대해 면밀히 검토해야 한다. 이에 본 연구에서는 부스추천시스템의 성과에 영향을 미치는 요인이 무엇인지 이론과 기존문헌을 통해 살펴보고자 하였다. 또한, 참관객의 지각된 부스추천시스템의 성과가 참관객의 계획되지 않은 행동에 대한 만족도와 부스추천시스템의 재사용의도에 어떤 영향을 미치는지 살펴보고자 하였다. 이러한 연구목적을 달성하기 위한 이론적 프레임워크로 본 연구는 계획되지 않은 행동이론(Unplanned Behavior Theory)을 도입하였다. 계획되지 않은 행동(unplanned behavior)이란 "소비자들이 사전에 계획하지 되지 않은 채 실행된 어떤 행동"으로 정의할 수 있다. 소비자들의 계획되지 않은 행동은 그 동안 마케팅 등 다양한 분야에서 연구되어 왔다. 특히, 마케팅에서는 계획되지 않은 행동 중 계획되지 않은 구매(unplanned purchasing)에 많은 관심을 두어 왔는데 이 개념은 종종 충동적 구매(impulsive purchasing)와 혼동되어 사용되곤 하였다. 그런데, 충동적 구매가 갑자기 무엇인가 구매를 해야하는 강하고 지속적인 충동(urge)이라고 본다면 계획되지 않은 구매는 구매의사결정의 시점이 상점에 들어가기 전이 아닌 상점 내에서 수행된다는 점이 다르다. 즉, 모든 충동적 구매는 비계획적이나, 모든 계획되지 않은 구매가 충동적인 구매는 아니다. 그런데, 왜 소비자들은 계획되지 않은 행동을 하는가? 이에 대해서는 학자들에 따라 여러 가지 의견이 있으나 소비자가 사전에 철저한 계획을 수립하지 않고 따라서 중간에 계획을 변화시킬만한 유연성(flexibility)이 있기 때문이라는 점에 일관된 의견을 보인다. 즉, 계획되지 않은 행동을 하는데 많은 비용이 소요된다면 소비자들은 사전에 수립한 계획을 변경하기 어렵게 될 것이기 때문이다. 본 연구에서 살펴보고자 하는 전시장 역시 참관객들은 방문하기 전에 전시장이 어떤 프로그램으로 구성되어 있는지 살펴보고, 어떤 부스를 방문할지를 사전에 계획하게 된다. 그 이유는 참관객들이 전시장 방문에 투입할 수 있는 시간은 한정되어 있는 반면에 전시회는 대규모의 다양한 부스로 운영되기 때문에 참관객들이 모든 부스를 참관한다는 것이 현실적으로 불가능하기 때문이다. 따라서 본 연구에서 제시하는 부스추천시스템이 참관객이 선호할 만한 부스를 추천하게 되면 참관객은 자신의 계획을 변화시켜서 부스추천시스템이 추천한 부스를 방문하게 된다. 이러한 방문행동은 소비자가 상점을 방문하거나, 관광객이 관광지에서 계획하지 않은 행동을 하는 것과 유사한 측면에서 이해가 가능하며 특히 최근 여행소비자들이 정보기기의 영향으로 계획되지 않은 행동을 하는 경우가 부쩍 증가한 추세와 동일한 맥락에서 이해가 가능하다. 이에 다음과 같은 연구모형을 설정하였다. 이 연구모형은 참관객이 지각한 부스추천시스템의 성과(performance)를 매개변수로 하고 있는데 이 성과에 영향을 미치는 요인으로 부스추천시스템에 대한 신뢰(trust), 전시장 참관객의 지식수준 (knowledge level), 부스 추천시스템의 기대된 개인화 (expected personalization) 그리고 부스추천시스템의 자유위협(threat to freedom)을 영향요인으로 파악하였다. 또한, 지각된 부스추천시스템 성과와 계획되지 않은 행동에 대한 참관객의 만족도와 향후 부스추천시스템의 재사용의도간의 인과관계도 파악하고자 하였다. 이 때 부스추천시스템에대한신뢰는권한(competence), 자선(benevolence), 그리고진실(integrity)의2차요인(2nd order factor)으로구성하고, 나머지 요인들은 1차 요인으로 구성하였다. 이를 검증하기 위해 2011 DMC Culture Open 행사에서 부스추천시스템을 테스트하기 위하여 시스템을 개발하고, 101명의 참관객을 대상으로 실증조사를 하여 분석하였다. 분석결과 첫째, 부스추천시스템에 있어서 참관객의 신뢰가 가장 중요한 요소이며 실제 해당 부스추천시스템을 이용한 참관객들은 신뢰를 통해 부스추천시스템이 성과 있다고 인식하였다. 둘째, 참관객의 지식수준 역시 부스추천시스템의 성과에 유의한 영향을 미쳤는데 이는 추천의 성과가 전시장에 대한 사전적 이해가 필요함을 의미한다. 즉, 전시장에 대한 이해가 높은 참관객이 부스추천시스템의 유용성을 더 잘 파악하는 것으로 나타났다. 셋째, 기대된 개인화 수준은 성과에 유의한 영향을 미치지 못했는데 이는 기존 연구와 다른 결과로 본 연구에 사용된 부스추천시스템이 충분히 개인화 서비스를 제공하지 못했기 때문이라고 판단된다. 넷째, 부스추천시스템의 추천정보는 개인의 자유를 위협하거나 제한한다고 느끼지 않음으로 충분히 유용한 가치를 갖는다고 할 수 있다. 끝으로 부스정보시스템의 높은 성과는 참관객들의 계획되지 않은 행동에 대한 높은 만족도와 향후에도 부스추천시스템을 재사용할 의도를 만드는 것으로 나타났다. 이와 같이 본 연구는 부스추천시스템이 야기하는 참관객의 계획되지 않은 부스방문행동에 미치는 영향력을 분석하기 위해 계획되지 않은 행동이론을 중심으로 실증자료를 이용하여 분석하고, 이를 통해 향후 부스추천시스템의 구축 및 설계에 유용한 시사점을 도출할 수 있었다. 향후에는 보다 정교한 설문구성과 측정대상을 이용하여 추가적인 검토가 필요할 것으로 기대된다.

쌀빵에 대한 인식 및 학교급식 적용 가능성 분석: 교육청 학교급식 담당자를 중심으로 (Perception of School Foodservice Officials on Rice Bread as School Foodservice Menu)

  • 양일선;이민아;차성미;조윤희;이소영;이소정;이해영
    • 한국식품영양과학회지
    • /
    • 제37권6호
    • /
    • pp.729-737
    • /
    • 2008
  • 본 연구에서는 교육청 학교급식 담당자를 대상으로 쌀빵을 학교급식에 적용하는데 있어서의 가능성 타진을 목적으로 학교급식 담당 실무자의 입장에서 쌀빵에 대한 인식 및 학교급식에의 적용가능성에 대해 분석 조사하였다. 응답한 33부의 설문지를 분석한 결과는 다음과 같다. 첫째, 조사대상자의 대부분(93.9%)은 여자였으며, 교육청 근무경력은 평균 2년 3.5개월, 학교급식관련 근무경력은 평균 8년 8.4개월이었다. 교육청 관할 하에 있는 학교로는 시 도 교육청 그룹에서는 초등학교의 경우 농어촌형 직영 272.3개교, 중학교의 경우 농어촌형 직영 115.5개교, 고등학교의 경우 농어촌형직영 73.0개교로 가장 많은 유형으로 나타났다. 지역교육청의 관할 하에 있는 학교 유형으로는 초등학교의 경우 도시형 직영 23.3개교, 중학교에서는 도시형 직영 11.6개교, 고등학교의 경우 도시형 위탁 5.3개교로 가장 높은 값으로 나타났다. 둘째, 교육청의 학교급식 지원 분야에 대해 복수응답하게 한 결과, 응답한 교육청 모두에서 저소득층 급식비를 지원하고 있었고 식품비 분야에서는 친환경농산물 12개청(50.5%), 우리농산물 5개청(20.8%), 지역농산물 4개청(16.7%)순으로 지원하고 있었다. 시 도 교육청에서는 저소득층 급식비(중앙값 839.0개교)에, 지역교육청에서는 지역농산물 식품비(중앙값 37.5개교)에 가장 많은 학교를 지원하고 있었다. 지원 금액으로는 시 도 교육청이 저소득층 급식비에 평균 168억원, 지역교육청이 급식종사자 인건비가 평균 10억 5천만원을 지원하고 있었다. 셋째, 학교급식에서의 쌀 이용현황을 살펴보면 초등학교에서는 평균 91.26%가 정부미, 40.64%가 지역쌀을 사용하고 있었고, 중학교와 고등학교 역시 정부미와 지역쌀을 주로 사용하고 있는 것으로 나타났다. 쌀 이용 증진에 대한 교육청의 관심도는 평균 5.00점(Likert 7점 척도)이었고 쌀 이용을 위한 교육청의 지원의지는 평균 4.66점으로 관심이 있다고 조사된 반면, 교육청이쌀 이용 증진을 위한 방안 및 정책을 시행한 경험은 평균 3.31점으로 나타나 상대적으로 정책 시행 경험이 적은 것을 알 수 있었다. 넷째, 학교급식에 쌀빵 메뉴 적용을 위한 방안 및 정책에 대해 교육청의 인식을 조사한 결과, 관심도는 평균 4.35점, 쌀빵 지원의지는 평균 4.14점, 급식에 쌀빵 적용의 바람직성은 4.71점, 급식에 쌀빵 적용 실현가능성은 4.69점으로 높은 점수를 나타낸 반면, 쌀빵 적용 방안 및 정책의 시행 경험은 2.18점으로 낮은 수준으로 조사되었다. 쌀빵을 학교급식에 적용하기 위한 바람직한 지원방법은 '관련 조리기기 지원'(예: 오븐) 19명(57.6%), '보조금 지급', '납품가 할인' 각 9명(27.3%), '현물(쌀빵)제공' 8명(24.2%)의 순으로 조사되었다. 쌀빵을 학교급식에 적용할 때의 장점으로는 다수가 '쌀 소비 촉진' 24명(72.7%)이라고 응답하였고, '영양적우수성' 18명(54.4%), '건강 지향적인 학교급식 이미지 제고' 17명(51.5%), '제공메뉴의 다양성' 12명(36.4%) 등의 의견이 있었다. 반면, 장애요인으로는 '조리시설(오븐 등)의 부족' 24명(72.7%), '비교적 높은 원가' 18명(54.5%), '식단 적용의 한계', '제한적인 조리방법'은 각 13명(39.4%), '급식정책의 미흡' 5명(15.2%), '업체의 홍보부족' 4명(12.1%) 등의 순으로 응답하였다. 다섯째, 교육청의 학교급식에서의 쌀 이용에 대한 의견과 쌀빵 적용에 대한 의견과의 상관성을 분석한 결과, 학교급식에서의 쌀 이용 증진에 대한 '관심'과 '지원의지'는 매우 유의한 상관관계가 있었으며(p<0.001), 또한 '관심'과 '지원의지'는 쌀 이용을 증진시키기 위한 방안 및 정책을 시행한 '경험'과 관련성이 있다고 조사되었다(각 p<0.05, p<0.01). 또 학교급식 메뉴에의 쌀빵을 적용하는 것에 있어서도 쌀빵 적용에 대한 '관심'과 '지원의지'는 유의한 상관관계가 있었으며(p<0.001), 쌀빵 적용의 '바람직성'과 '지원의지', 쌀빵 적용의 '실현가능성' 역시 매우 유의한 상관관계를 보여주었다(p<0.001). 쌀 이용에 대한 관심이 적은 그룹과 관심이 많은 그룹 간에는 학교급식 메뉴에 쌀빵을 적용하는 것에 대한 인식의 모든 항목에서 유의한 차이가 없다고 나타났으며, 쌀 이용 증진을 위한 지원의지가 높은 그룹과 낮은 그룹 간에는 쌀빵 적용을 위한 정책을 시행한 경험에 대한 문항을 제외하고는 유의한 차이를 보였다. 또한 쌀 이용 증진을 위한 정책을 시행한 경험 여부에 따른 두 그룹 간 학교급식 메뉴의 쌀빵 적용에 대한 인식을 비교한 결과, 쌀빵 적용에 대한 관심, 지원의지, 정책 시행 경험 문항에 있어서 경험 많은 군이 경험 적은 군에 비해 유의하게 높은 점수를 보여주었다(p<0.01). 이상의 연구 결과는 쌀빵을 학교급식에 적용 및 확대하는데 앞서 정책실행의 주체가 되는 교육청 담당자들의 인식을 파악한 것으로 앞으로의 쌀빵 적용 증진 계획을 효율적으로 세우는 것에 도움이 될 것이라고 판단된다. 연구결과와 같이 대부분의 교육청 급식 담당자들이 쌀 소비 촉진 및 영양과 건강증진 등의 이유로 쌀뿐만 아니라 쌀빵을 학교급식에 적용하는 것에 의지와 관심이 높음을 알 수 있었으나 실제로 실행에 옮기는 경우는 상대적으로 적은 것을 파악할 수 있었다. 따라서 앞으로 쌀빵을 학교급식에 확대 적용하기 위해서는 교육청 담당자들의 이런 의지와 관심을 더욱 확고히 하고 현실적인 지원, 예를들어 오븐 및 현물 지원 등의 적극적인 지원 방안이 수립되어야 한다고 사료된다. 본 연구는 조사대상자인 교육청 급식담당자의 표본수 확보에 한계를 보였고, 아직까지 상용화 및 급식현장에서 제공되는 비율이 미미한 쌀빵이 조사의 주제어였기에 응답자의 인지도 및 인식 부족이 연구의 한계점으로 작용하였다. 향후 급식현장에서의 목소리를 담아낼 수 있는 영양(교)사, 학생을 대상으로 하는 쌀빵관련 연구가 진행된다면 쌀빵 사용 확대에 현실적인 지원책 마련에 일조할 것으로 사료된다.

빅데이터 도입의도에 미치는 영향요인에 관한 연구: 전략적 가치인식과 TOE(Technology Organizational Environment) Framework을 중심으로 (An Empirical Study on the Influencing Factors for Big Data Intented Adoption: Focusing on the Strategic Value Recognition and TOE Framework)

  • 가회광;김진수
    • Asia pacific journal of information systems
    • /
    • 제24권4호
    • /
    • pp.443-472
    • /
    • 2014
  • To survive in the global competitive environment, enterprise should be able to solve various problems and find the optimal solution effectively. The big-data is being perceived as a tool for solving enterprise problems effectively and improve competitiveness with its' various problem solving and advanced predictive capabilities. Due to its remarkable performance, the implementation of big data systems has been increased through many enterprises around the world. Currently the big-data is called the 'crude oil' of the 21st century and is expected to provide competitive superiority. The reason why the big data is in the limelight is because while the conventional IT technology has been falling behind much in its possibility level, the big data has gone beyond the technological possibility and has the advantage of being utilized to create new values such as business optimization and new business creation through analysis of big data. Since the big data has been introduced too hastily without considering the strategic value deduction and achievement obtained through the big data, however, there are difficulties in the strategic value deduction and data utilization that can be gained through big data. According to the survey result of 1,800 IT professionals from 18 countries world wide, the percentage of the corporation where the big data is being utilized well was only 28%, and many of them responded that they are having difficulties in strategic value deduction and operation through big data. The strategic value should be deducted and environment phases like corporate internal and external related regulations and systems should be considered in order to introduce big data, but these factors were not well being reflected. The cause of the failure turned out to be that the big data was introduced by way of the IT trend and surrounding environment, but it was introduced hastily in the situation where the introduction condition was not well arranged. The strategic value which can be obtained through big data should be clearly comprehended and systematic environment analysis is very important about applicability in order to introduce successful big data, but since the corporations are considering only partial achievements and technological phases that can be obtained through big data, the successful introduction is not being made. Previous study shows that most of big data researches are focused on big data concept, cases, and practical suggestions without empirical study. The purpose of this study is provide the theoretically and practically useful implementation framework and strategies of big data systems with conducting comprehensive literature review, finding influencing factors for successful big data systems implementation, and analysing empirical models. To do this, the elements which can affect the introduction intention of big data were deducted by reviewing the information system's successful factors, strategic value perception factors, considering factors for the information system introduction environment and big data related literature in order to comprehend the effect factors when the corporations introduce big data and structured questionnaire was developed. After that, the questionnaire and the statistical analysis were performed with the people in charge of the big data inside the corporations as objects. According to the statistical analysis, it was shown that the strategic value perception factor and the inside-industry environmental factors affected positively the introduction intention of big data. The theoretical, practical and political implications deducted from the study result is as follows. The frist theoretical implication is that this study has proposed theoretically effect factors which affect the introduction intention of big data by reviewing the strategic value perception and environmental factors and big data related precedent studies and proposed the variables and measurement items which were analyzed empirically and verified. This study has meaning in that it has measured the influence of each variable on the introduction intention by verifying the relationship between the independent variables and the dependent variables through structural equation model. Second, this study has defined the independent variable(strategic value perception, environment), dependent variable(introduction intention) and regulatory variable(type of business and corporate size) about big data introduction intention and has arranged theoretical base in studying big data related field empirically afterwards by developing measurement items which has obtained credibility and validity. Third, by verifying the strategic value perception factors and the significance about environmental factors proposed in the conventional precedent studies, this study will be able to give aid to the afterwards empirical study about effect factors on big data introduction. The operational implications are as follows. First, this study has arranged the empirical study base about big data field by investigating the cause and effect relationship about the influence of the strategic value perception factor and environmental factor on the introduction intention and proposing the measurement items which has obtained the justice, credibility and validity etc. Second, this study has proposed the study result that the strategic value perception factor affects positively the big data introduction intention and it has meaning in that the importance of the strategic value perception has been presented. Third, the study has proposed that the corporation which introduces big data should consider the big data introduction through precise analysis about industry's internal environment. Fourth, this study has proposed the point that the size and type of business of the corresponding corporation should be considered in introducing the big data by presenting the difference of the effect factors of big data introduction depending on the size and type of business of the corporation. The political implications are as follows. First, variety of utilization of big data is needed. The strategic value that big data has can be accessed in various ways in the product, service field, productivity field, decision making field etc and can be utilized in all the business fields based on that, but the parts that main domestic corporations are considering are limited to some parts of the products and service fields. Accordingly, in introducing big data, reviewing the phase about utilization in detail and design the big data system in a form which can maximize the utilization rate will be necessary. Second, the study is proposing the burden of the cost of the system introduction, difficulty in utilization in the system and lack of credibility in the supply corporations etc in the big data introduction phase by corporations. Since the world IT corporations are predominating the big data market, the big data introduction of domestic corporations can not but to be dependent on the foreign corporations. When considering that fact, that our country does not have global IT corporations even though it is world powerful IT country, the big data can be thought to be the chance to rear world level corporations. Accordingly, the government shall need to rear star corporations through active political support. Third, the corporations' internal and external professional manpower for the big data introduction and operation lacks. Big data is a system where how valuable data can be deducted utilizing data is more important than the system construction itself. For this, talent who are equipped with academic knowledge and experience in various fields like IT, statistics, strategy and management etc and manpower training should be implemented through systematic education for these talents. This study has arranged theoretical base for empirical studies about big data related fields by comprehending the main variables which affect the big data introduction intention and verifying them and is expected to be able to propose useful guidelines for the corporations and policy developers who are considering big data implementationby analyzing empirically that theoretical base.

일본의 중견기업에 관한 연구 : 현황과 특징, 정책을 중심으로 (A Study on Medium-Sized Enterprises of Japan)

  • 강철구;김현성;김현철
    • 중소기업연구
    • /
    • 제32권2호
    • /
    • pp.209-223
    • /
    • 2010
  • 본고에서는 일본 중견기업의 위상, 특징, 관련 정책을 검토함으로써 우리나라에서의 중견기업 정책의 방향을 모색하고자 한다. 일본의 경쟁우위업종인 기계, 전자부품업의 출하와 고용비중은 여타 업종보다 높아, 그 저변에 두터운 중견기업이 존재하고 있음을 알 수 있다. 일본의 중견기업 육성정책은 연구개발과 환경대책을 위한 기업간 제휴 유도라는 측면에서 간접적으로 지원하고 있다. 우리나라도 특정 정책사업에 있어서 기업간 협력 유도를 통하여 중견기업을 육성할 수 있을 것이다.

대전원교학생대가배점중요성적감지화타문광고가배점지후적만의도지간적차거대타문구매행위적영향(大专院校学生对咖啡店重要性的感知和他们光顾咖啡店之后的满意度之间的差距对他们购买行为的影响) (The Effect of the Gap between College Students' Perception of the Importance of Coffee Shops and Their Satisfaction after Patronizing Coffee Shops on Their Purchasing Behavior)

  • Lee, Won-Ok
    • 마케팅과학연구
    • /
    • 제19권4호
    • /
    • pp.1-10
    • /
    • 2009
  • 本研究的目的是对咖啡店的 "重要性"(顾客在光顾咖啡店以前的感知)和积极或消极的 "满意度"(顾客在光顾咖啡店以后的感受)之间的差距进行分类, 并分析这些差距对对购买行为的影响. 为此, 我使用重要性和满意度之间的差距作为选择咖啡店的解释变量, 并通过使用有序Probit模型(OPM)来实证分析差距对购买行为(整体满意度和愿意到再次光顾)的影响方向和大小. 先前使用IPA的研究评估了差距影响的方向和大小的象限, 但是在分析差距对顾客的影响方面却失败了. 在本研究中, 我评估了积极和消极的差距对顾客满意度和愿意去再光顾的影响. 通过使用OPM,我量化了积极和消极的差距对顾客整体满意度和愿意去再光顾的影响. 每个人的支出, 光顾的频率和购买咖啡的地方对顾客整体满意度有最积极的影响. 光顾的频率, 在每人的支出之后, 然后是购买咖啡的地方对顾客整体满意度有最积极的影响. 因此每个人的支出和光顾的频率对顾客整体满意度有最积极的影响. 这一发现意味着一个在咖啡店每次或每周花费5000韩元的顾客的实际的满意度越高(差距), 其整体满意度和愿意去再光顾就越高. 虽然经济效益对总体满意度和愿意去再光顾有显著影响, 但是大专和大学的学生仍然愿意去咖啡馆并愿意消费5000韩元, 因为他们不只是购买咖啡本身而且将咖啡店作为其他活动的场所, 例如工作, 和朋友见面或是放松的地方. 学院和大学的学生还可以在咖啡店通过个人电脑上网, 看电影, 学习, 因此, 咖啡馆应对顾客提供适当的设施和服务. 咖啡店品牌的积极差距对愿意去再光顾有积极的影响表明顾客满意度越高, 顾客越愿意去再光顾. 另一方面, 这一因素的消极差距意味着顾客满意度越低, 顾客再光顾的意愿也越低. 因此, 在本研究中, 与其他评估的因素相比, 品牌因素对满意度有较大的影响. 鉴于国内咖啡文化变得越来越高级, 大专院校的学生对这一趋势也很敏感, 所以学生有很多可选择的品牌. 在韩国最高级的咖啡店, 外墙是玻璃建造的并可以打开, 内部是充满异国情调的开放式厨房. 这些高级咖啡店作为标志的功能复合大专院校学生的品味. 韩国咖啡店已成为一个文化品牌. 从品牌因素来看, 为了让顾客觉得这些咖啡店是高级的, 高质量的设备和提供更好服务的措施应当建立起来. 韩国咖啡馆作为蓬勃发展的行业品牌竞争加剧的结果表明, 提供与竞争对手不同的额外服务是有必要的. 顾客可以免费使用扫描仪. 另一个可以用来提高品牌的战略是提供和经营为集体学习而准备的讨论会议室. 如果咖啡馆采取这些类型的策略, 学院/大学的学生将更有可能认为他们承担的费用是值得的, 随后, 他们将可能更满足这些咖啡馆的品牌, 并更愿意再次光顾. 性别和学习年数对总体满意度和再光顾的意愿有最消极的营销. 女学生比男学生更容易满足和再光顾. 三, 四年级的学生比一, 二年级的学生更容易满足和再光顾. 喝咖啡的学生, 单独在咖啡店看书, 用笔记本电脑是很容易被注意到的. 高年级学生为了有效地利用时间用于自我发展和寻找工作往往独自光顾咖啡店. 从积极的差距来看, 经济效率这一因素对总体满意度和愿意再光顾有最大的影响. 与咖啡价格一起, 学生实际满意度(差距)越高, 总体满意度和再光顾的意愿也越高. 有消极差距的经济效率队再光顾有消极营销的结果表明较小的消极差距可以让再光顾的意愿更高. 在持续恶化的市场环境中, 坐落在大专院校附近的咖啡店采取诸如积分或会员卡, 和信用卡 公司的战略联盟, 发展套餐菜单或季节菜单和免费咖啡服务这些战略来提高竞争力. 就消极差距而言产品功率也有消极的影响, 这表明较高的负差距会导致较低的再光顾的意愿. 因为还有更多的客户比前几十年, 在这十年里更喜欢咖啡, 新一代的客户, 即学院/大学的学生, 希望除了咖啡还有更重菜单项目. 因此, 咖啡店应当增加配菜项目, 如华夫饼, 糕, 蛋糕, 三明治和沙拉. 例如, 星巴克韩国正在努力加强卖草莓糕, 艾草香味, 南瓜产品, 并提供免费的咖啡或奶油. 总而言之, 咖啡馆应注重提高其经济效率, 品牌和产品功率, 以加强大专院校学生的满意度. 由于店铺毗邻学大专院校可享受地缘优势, 就经济效率, 品牌和产品功率而言提供不同的服务, 很可能会提高客户满意度和回访. 咖啡厅的品牌, 因此, 应不断创新和变化, 以满足顾客的愿望. 由于这项研究只是针对在首尔的大专院校的学生, 需要针对不同地区和年龄组的比较研究来概括本研究的结果和建议.

  • PDF

유통경로내의 거래비용에 대한 개념적 고찰 (A Conceptual Review of the Transaction Costs within a Distribution Channel)

  • 권영식;문장실
    • 유통과학연구
    • /
    • 제10권2호
    • /
    • pp.29-41
    • /
    • 2012
  • 본 논문은 거배비용분석 이론의 포괄적 이해를 돕기 위한 하나의 방법으로 거래비용분석법의 구성요소 중의 하나인 "거래비용"에 대한 개념검토를 목적으로 하고 있다. 유통경로 지배구조 현상을 규명하기 위한 하나의 방법으로 거래비용 분석의 개념적 틀을 적용한 지도 벌써 수십 년이 경과되었다. 본 연구의 출발점은 Williamson(1975)이 개념적 틀에서 제시한 자산특유성(asset specificity)을 어떠한 형태로 정의하고 있는지?, 기존의 선행연구들에서는 어떠한 형태로 자산특유성을 설명하고 있으며, 선행연구들에서는 자산특유성 개념의 조작적 정의를 어떠한 형태로 정의하고 있는지? 에 대한 물음에서 출발하고 있다. 본 연구를 통해 거래비용 이론이 완전 자유 경쟁체제가 아닌 통제 경제체제에서도 적용 가능한 것이냐 하는 것이다. 거래비용 이론은 Williamson(1975)이 제시한 개념적 틀을 그대로 적용할 것이 아니라 해당 산업내지는 국가 체제에 따라 수정 보완하여 적용하는 것이 바람직하다는 결론이다. 기존의 거래비용(자산특유성)에 대한 연구방향을 종합하여 요약하면 크게 네 가지 방향으로 나누어진다고 볼 수 있다. 첫째는 기업이 제품의 유통과 관련하여 기업이 특유자산을 보유하고 있는 판매 대리인을 이용할 것인지, 아니면 자사의 고용인을 이용할 것인지에 대한 연구의 흐름이다. 둘째, 원료의 공급에 있어 기업이 특유자산을 보유하고 불확실성이 큰 경우 기업이 직접 제조할 것인지 아니면 외부 공급자로 부터 구매할 것인지에 대한 의사결정의 문제를 다루고 연구의 흐름이다. 셋째는 기업이 해외 시장 또는 서비스 시장 진출 시 지사의 사용 할 것인지 아니면 현지 대리인의 이용에 관한 문제를 다루는 연구의 흐름이다. 넷째는 거래비용이론이 가지는 기본 가정의 한계를 지적하고 거래비용이론의 확장을 시도하는 연구의 흐름이다. 거래비용분석이 갖는 한계점으로는 첫째, 기존의 연구들은 Williamson(1975)이 제시한 개념들을 이용하여 단순히 유통경로 현상을 규명하는데 만 치중하고 있다는 것이다. 둘째, 유통경로 구성원들이 거래비용(자산특유성)때문에 다양한 거래구조를 형성했다면 그에 따른 명확한 성과가 있어야 하는데, Heide와 John(1988)의 지적에서 처럼 거래비용분석의 기본 가정에 관한 실증적 연구가 매우 애매 한다는 것이다. 셋째, 기업이 특유자산(불확실성)을 보유하고 있는 거래를 내부화한다고 가정하고 있으나 내부화에 대한 명확한 설명이 제시되어 있지 않다는 것이다. 다섯째, 거래비용 이론은 완전자유경쟁체제에 적합한 이론이라 할 수 있으며 통제경제 내지는 계획경제 체제하에서는 적용하기가 부적절한다. 향후 연구를 위한 제언으로는 경제구조와 산업구조의 차이에서 발생하는 현상으로 분석할 수 있으며, 다양한 산업구조에 거래비용분석을 적용할 필요성이 존재한다. 따라서 거래비용분석에서 제시하고 있는 거래비용에 대한 명확한 정의가 필요하다.

  • PDF

딥러닝 시계열 알고리즘 적용한 기업부도예측모형 유용성 검증 (Corporate Default Prediction Model Using Deep Learning Time Series Algorithm, RNN and LSTM)

  • 차성재;강정석
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.1-32
    • /
    • 2018
  • 본 연구는 경제적으로 국내에 큰 영향을 주었던 글로벌 금융위기를 기반으로 총 10년의 연간 기업데이터를 이용한다. 먼저 시대 변화 흐름에 일관성있는 부도 모형을 구축하는 것을 목표로 금융위기 이전(2000~2006년)의 데이터를 학습한다. 이후 매개 변수 튜닝을 통해 금융위기 기간이 포함(2007~2008년)된 유효성 검증 데이터가 학습데이터의 결과와 비슷한 양상을 보이고, 우수한 예측력을 가지도록 조정한다. 이후 학습 및 유효성 검증 데이터를 통합(2000~2008년)하여 유효성 검증 때와 같은 매개변수를 적용하여 모형을 재구축하고, 결과적으로 최종 학습된 모형을 기반으로 시험 데이터(2009년) 결과를 바탕으로 딥러닝 시계열 알고리즘 기반의 기업부도예측 모형이 유용함을 검증한다. 부도에 대한 정의는 Lee(2015) 연구와 동일하게 기업의 상장폐지 사유들 중 실적이 부진했던 경우를 부도로 선정한다. 독립변수의 경우, 기존 선행연구에서 이용되었던 재무비율 변수를 비롯한 기타 재무정보를 포함한다. 이후 최적의 변수군을 선별하는 방식으로 다변량 판별분석, 로짓 모형, 그리고 Lasso 회귀분석 모형을 이용한다. 기업부도예측 모형 방법론으로는 Altman(1968)이 제시했던 다중판별분석 모형, Ohlson(1980)이 제시한 로짓모형, 그리고 비시계열 기계학습 기반 부도예측모형과 딥러닝 시계열 알고리즘을 이용한다. 기업 데이터의 경우, '비선형적인 변수들', 변수들의 '다중 공선성 문제', 그리고 '데이터 수 부족'이란 한계점이 존재한다. 이에 로짓 모형은 '비선형성'을, Lasso 회귀분석 모형은 '다중 공선성 문제'를 해결하고, 가변적인 데이터 생성 방식을 이용하는 딥러닝 시계열 알고리즘을 접목함으로서 데이터 수가 부족한 점을 보완하여 연구를 진행한다. 현 정부를 비롯한 해외 정부에서는 4차 산업혁명을 통해 국가 및 사회의 시스템, 일상생활 전반을 아우르기 위해 힘쓰고 있다. 즉, 현재는 다양한 산업에 이르러 빅데이터를 이용한 딥러닝 연구가 활발히 진행되고 있지만, 금융 산업을 위한 연구분야는 아직도 미비하다. 따라서 이 연구는 기업 부도에 관하여 딥러닝 시계열 알고리즘 분석을 진행한 초기 논문으로서, 금융 데이터와 딥러닝 시계열 알고리즘을 접목한 연구를 시작하는 비 전공자에게 비교분석 자료로 쓰이기를 바란다.

해외농업투자에 따른 유통체계 개선방안에 관한 연구 (A study on the improvement of distribution system by overseas agricultural investment)

  • 선일석;이동옥
    • 유통과학연구
    • /
    • 제8권3호
    • /
    • pp.17-26
    • /
    • 2010
  • 세계경제 및 환경의 변화에 따라 농산물의 불안정적인 수급으로 인한 문제점이 노출되고 있으며, 우리나라의 경우 농산물의 안정적인 확보를 위하여 국가 전략적 차원에서의 해외농업투자의 필요성이 요구되고 있다. 하지만 정부차원의 지원 미진, 해외 농업에 대한 정보 및 기술 미비, 개발자금 확보의 어려움, 장기간의 투자금 회수기간, 사후관리 미흡 등의 이유로 성과를 이루지 못하고 있는 실정이며, 특히 해외 농산물의 국내 반입 시 관세의 장벽, 물류 유통비용 등으로 가격 경쟁력이 떨어지고 있어 국내에 반입되지 못하고 있는 실정이다. 이에 본 연구에서는 우리나라의 해외농업투자의 기본개념 및 실태를 살펴보고 해외농업투자의 필요성과 고려사항, 문제점 등을 도출하여 해외에서 재배된 농산물의 경쟁력을 위한 유통 측면에서의 개선방안을 정부의 간접적인 지원, 유통 현대화 및 유통정보기능 강화, 유통시설, 수송루트, 하역업무개선, 경쟁력 확보를 위한 정부의 정책적 지원, 교육 훈련을 통한 전문인력 양성 등 다섯 가지 측면에서 제시하였다.

  • PDF

한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발 (DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA)

  • 박만배
    • 대한교통학회:학술대회논문집
    • /
    • 대한교통학회 1995년도 제27회 학술발표회
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF