• Title/Summary/Keyword: fourier spectrum

Search Result 480, Processing Time 0.037 seconds

A Study on Evaluating Length Limit in Tangent Section of Highway Based on Driver's Workload (운전자 작업부하를 고려한 최장 허용 직선길이 결정에 관한 연구)

  • 정봉조;강정규;김주영;장명순
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.2
    • /
    • pp.17-26
    • /
    • 2002
  • Driver's psychophysiological load is one of the key measures for evaluating the safety of the highway. The purpose of this study is to propose and to test the methodology of evaluating the length limit of tangent section using driver's psychophysiological load. Driver's psychophysiological data is represented by the data acquire by frontal and occipital lobe. In order to compare the differences between tangent segments and the orders, real road driving experiments were performed. We collected psychophysiological data during the operation of vehicles. The experimental data were analyzed using FFT (Fast Fourier Transform) and relative power spectrum tools. These routine produces the beta value which is a major factor in consideration of driver's condition. The results in this study are summarized as follows: (1) A new methodology of evaluating the length limit in tangent section of highway using driver's psychophysiological load was proposed. (2) It was observed that driver's work load at tangent section was three times lower than that at the other section types. The beta value at tangent section is 2.219, while that at general section is 0.821. (3) It was observed that the driver's work load was significantly dropped to 0.428 after the continuous driving of 4.2km tangent section. (4) Based on the experimental subjects(from 27 Years to 31). we suggest that 30 times of design speed(3.0 km) could be acceptable as the length limit of tangent section in highway rather than the Previous limit which is 20 times of design speed(2.0km).

Phosphate Adsorption-Desorption of Kaolinite KGa-2 (Source Clay) (카올리나이트 KGa-2 (표준 점토)의 인산염 흡착-탈착 특성)

  • Cho, Hyen-Goo;Choi, Jae-Ho;Moon, Dong-Hyuk;Kim, Soo-Oh;Do, Jin-Youn
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.117-127
    • /
    • 2008
  • The characteristics of phosphate adsorption-desorption on kaolinite was studied by batch adsorption experiments and detailed adsorbed state of phosphate on kaolinite surface was investigated using ATR-FTIR (Attenuated Total Reflectance-Fourier Transform Infrared) spectroscopy. The phosphorous contents were measured using UV-VIS-IR spectrophotometer with 820 nm wavelength. The adsorbed P was generally increased with increasing pH value in the range of pH 4 to pH 9, however it is not distinct. Moreover the adsorbed P was significantly changed with different initial phosphate concentration. The adsorption isotherms were well fitted with the Langmuir equation, Temkin equation, and Freundlich equation in descending order. The maximum Langmuir adsorption capacity of kaolinite KGa-2 is 232.5 ($204.1{\sim}256.5$) mg/kg and has very higher value than that of kaolinite KGa-1b. Most of adsorbed phosphate on kaolinite were not easily desorbed to aqueous solution, but might fixed on kaolinite surface. However it needs further research about the exact desorption experiment. It was impossible to recognize phosphorous adsorption bands on kaolinite in ATR-FTIR spectrum from kaolinite bands themselves, because the absorption peaks of phosphorous have very similar positions with those of kaolinite, and the intensities of the former were very weak in comparison with those of the latter.

Development of Software Correlator for KJJVC (한일공동VLBI상관기를 위한 소프트웨어 상관기의 개발)

  • Yeom, J.H.;Oh, S.J.;Roh, D.G.;Kang, Y.W.;Park, S.Y.;Lee, C.H.;Chung, H.S.
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.4
    • /
    • pp.567-588
    • /
    • 2009
  • Korea-Japan Joint VLBI Correlator (KJJVC) is being developed by collaborating KASI (Korea Astronomy and Space Science Institute), Korea, and NAOJ(National Observatory of Japan), Japan. In early 2010, KJJVC will work in normal operation. In this study, we developed the software correlator which is based on VCS (VLBI Correlation Subsystem) hardware specification as the core component of KJJVC. The main specification of software correlator is 8 Gbps, 8192 output channels, and 262,144-points FFT (Fast Fourier Transform) function same as VCS. And the functional algorithm which is same as specification of VCS and arithmetic register are adopted in this software correlator. To verify the performance of developed software correlator, the correlation experiments were carried out using the spectral line and continuum sources which were observed by VERA (VLBI Exploration of Radio Astrometry), NAOJ. And the experimental results were compared to the output of Mitaka FX correlator by referring spectrum shape, phase rate, and fringe detection and so on. Through the experimental results, we confirmed that the correlation results of software correlator are the same as Mitaka FX correlator and verified the effectiveness of it. In future, we expect that the developed software correlator will be the possible software correlator of KVN (Korean VLBI Network) with KJJVC by introducing the correlation post-processing and modifying the user interface as like GUI (Graphic User Interface).

A Study on the Correlation Between Sasang Constitution and Sound Characteristics Used Harmonics and Formant Bandwidth (Harmonics(배음)와 Formant Bandwidth(포먼트 폭)를 이용한 음성특성(音聲特性)과 사상체질간(四象體質間)의 상관성(相關性) 연구(硏究))

  • Park, Sung-Jin;Kim, Dal-Rae
    • Journal of Sasang Constitutional Medicine
    • /
    • v.16 no.1
    • /
    • pp.61-73
    • /
    • 2004
  • This study was prepared to investigate the correlation between Sasang constitutional groups and voice characteristics using voice analysis system(in this study, CSL). I focused on the voice characteristics in terms of harmonics, Formant frequency and Formant Bandwidth. The subjects were 71 males. I classified them into three groups, that is Soeumin group, Soyangin group and Taeumin group. The classification method of Constitution used two ways, QSCCII(Questionnarie for the Sasang Constitution Classification II) and Interview with a specialist in Sasang Constitution. So 71 people were categorized into 31 Soeumin(people), 18 Soyangin(people) and 22 Taeumin(people). Pitch is approximately similar to the fundamental frequency(F0) in voices. Shimmer in dB gives an evaluation of the period-to-period variability of the peak-to-peak amplitude within the analyzed voice sample. FFT(Fast Fourier Transform) method in CSL can display sampled voices into harmonics. H1 is the first peak and h2 is the second peak in the harmonics. The amplitude difference of h1 and h2(h1-h2) can be explained as the speaker's phonation type, And Formant frequency and bandwidth can be explained as the speaker's vocal tract. So I checked the harmonics and Formant frequency and Bandwidth as the voice parameters. First I have captured /e/ voices from all subjects using microphone. And then I analyzed /e/ voices with CSL. Power Spectrum and Formant History is the menu in the CSL which can display harmonics and Formant frequency and bandwidth. The results about the correlation between Sasang Constitutional Groups and voice parameters are as follows; 1. There is no significant amplitude difference of harmonics(h1-h2) among three groups. 2. There is the significant difference between Soeumin Group and Soyangin Group in Formant Frequency 1 and Formant Bandwidth 1(p<0.05). Any other parameters have no significance. I assume that Soyangin Group has clearer and brighter voice than Soeumin Group according to the Formant Bandwidth difference. And I think its result has coincidence with the context of "Dongyi Suse Bowon" and "Sasangimhejinam".

  • PDF

Spectral Analysis of Heart Rate Variability during Treadmill Exercise at Various Speeds and Grades

  • Kim, Hyeong-Jin;Kim, Ki-Hong;Ahn, Dong-Kuk;Park, Jae-Sik
    • The Korean Journal of Physiology
    • /
    • v.30 no.1
    • /
    • pp.43-51
    • /
    • 1996
  • This study was aimed to elucidate the changes in heart rate variability during treadmill exercise at various speeds and grades by spectral analysis. Thirty-three untrained male college students aged $20{\sim}26\;yr $were employed to exercise on a treadmill using 4 speeds (4.02, 5.47, 6.76 and 8.05 km/h) and 6 grades (0, 4, 8, 12, 16 and 20%). A fixed speed was selected for each session with the grade increased every 3 min. The electrocardiogram, respiration and the stepping activity were continuously recorded through an A/D converter system on the computer disk. Power spectra of heart rate variability (RRV) were obtained by use of a fast Fourier transform algorithm. The frequency domain was divided into 3 bands: $VLF\;(0{\sim}0.04\;Hz),\;LF\;(0.04 {\sim}0.15\;Hz)\;and\;HF\;(0.15{\sim}1.00\;Hz).$ Heart rate was $74.4{\pm}2.1\;beats/min$ at rest and showed a steady increase during treadmill exercise with increasing speed and grade up to $196.7{\pm}5.0\;beats/min.$ Total power of HRV was $35.0{\pm}6.7\;(beats/min)^{2}$ at rest and progressively decreased during exercise down to $1.9{\pm}0.3\;(beats/min)^{2}.$ The %VLF power of HRV was $34.5{\pm}3.7\; %$ at rest and showed no significant change during exercise except for a decrease observed at the highest intensity of exercise. The %LF power was $44.1{\pm}3.0\;%$ at rest and showed a progressive decrease down to $4.5{\pm}1.0\;%$ during those stages of exercise where heart rate was over 135 beats/min. The %HF power was $21.4{\pm}2.9\;%$ at rest and showed a progressive increase up to $87.1{\pm}6.7\;%$ during higher intensity exercise where heart rate was over 165 beats/min. Peak frequency of HF band was $0.200{\pm}0.018\;Hz$ at rest and was shifted to higher frequencies up to $0.909{\pm}0.048\;Hz$ at heart rates greater than 135 beats/min. Respiratory frequency was $18.0{\pm}1.5$ breaths/min at rest and significantly increased during exercise up to $53.0{\pm}3.7$ breaths/min. Stride frequency during treadmill exercise showed an increasing tendency with increasing speed from $55.6{\pm}0.9$ steps/min at 4.02 km/h to $81.2{\pm}0.6$ at 8.05 km/h. It was concluded that total power of HRV decreased progressively with increasing exercise intensity due to the withdrawal of parasympathetic activity. At higher exercise intensity, % LF power decreased and %HF power increased with its peak frequency shifted to higher values in a progressive mode with increasing speed and grade, reflecting a readjustment in the cardiovascular system and the increased respiration and its rate, respectively.

  • PDF

Spectroscopical Analysis of SiO2 Optical Film Fabricated by FHD(Flame Hydrolysis Deposition) (FHD(Flame Hydrolysis Deposition)공정으로 제작된 SiO2 광도파막의 분광학적 분석)

  • Kim, Yun-Je;Shin, Dong-Wook
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.9
    • /
    • pp.896-901
    • /
    • 2002
  • Since many process parameters of FHD(Flame Hydrolysis Deposition) are involved in forming multi-component amorphous silica film ($SiO_2-B_2O_3-P_2O_5-GeO_2$), it has not been easy to predict the optical, mechanical and thermal properties of deposited film from the simple process parameters, such as source flow rate. Furthermore, the prediction of final composition of film becomes even more difficult after sintering at high temperature due to the evaporation of volatile dopants. The motivation of the study was to clarify the quantitative relationship between simple process parameters such as the flow rate of source gases and resulting chemical composition of sintered film. Hence, the compositional analysis of silica soot by FTIR(Fourier Transformation Infrared Spectroscopy) and ICP-AES(Inductively Coupled Plasma-Atomic Emission Spectrometry) under the control of the amount of dopant was carried out to obtain the quantitative composition. By measuring spectrum of absorbance from FTIR, the compositional change of B-O, Si-O, OH($H_2O$) in silica film was measured. The concentrations of these dopants were also measured by ICP-AES, which were compared with the FTIR result. The final quantitative relationship between simple process parameters and composition was deduced from the comparison between two results.

Seismic Performance-Based Design for Breakwater (방파제의 성능기반 내진설계법)

  • Kim, Young-Jun;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.12
    • /
    • pp.91-101
    • /
    • 2022
  • The 1995 Kobe earthquake caused a massive damage to the Port of Kobe. Therefore, it was pointed out that it was impossible to design port structures for Level II (Mw 6.5) earthquakes with quasi-static analysis and Allowable Stress Design methods. In Japan and the United States, where earthquakes are frequent, the most advanced design standards for port facilities are introduced and applied, and the existing seismic design standards have been converted to performance-based design. Since 1999, the Korean Port Seismic Design Act has established a definition of necessary facilities and seismic grades through research on facilities that require seismic design and their seismic grades. It has also established a performance-based seismic design method based on experimental verification. In the performance-based seismic design method of the breakwater proposed in this study, the acceleration time history on the surface of the original ground was subjected to a fast Fourier transform, followed by a filter processing that corrected the frequency characteristics corresponding to the maximum allowable displacement with respect to performance level of the breakwater and the filtered spectrum. The horizontal seismic coefficient for the equivalent static analysis considering the displacement was calculated by inversely transforming (i.e., subjected to an inverse fast Fourier transform) into the acceleration time history and obtaining the maximum acceleration value. In addition, experiments and numerical analysis were performed to verify the performance-based seismic design method of breakwaters suitable for domestic earthquake levels.

Oxidation behavior on the surface of titanium metal specimens at high temperatures (300~1000℃) (고온 (300~1000 ℃)에서 티타늄 금속시편의 표면 산화거동)

  • Park, Yang-Soon;Han, Sun-Ho;Song, Kyuseok
    • Analytical Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.464-470
    • /
    • 2009
  • For the investigation of the oxidation behavior for titanium metal at various temperatures, titanium specimens were heated for 2 hours in the range of $300{\sim}1000^{\circ}C$, individually. And then X-ray diffraction(XRD), scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS) and attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopic analyses were carried out. At $300^{\circ}C$, infrared absorption bands on the surface of the titanium specimen were shown in a spectrum by the oxygen uptake of titanium metal(hexagonal). At increased temperature, not only infrared absorption bands but also X-ray diffraction peaks for the titanium oxide were grown and shifted to low wave number ($cm^{-1}$) and angle($^{\circ}$) due to the more oxygen diffusion into titanium metal. At $700^{\circ}C$, $Ti_3O$ (hexagonal phase) was identified by X-ray diffractometer. $TiO_2$ (rutile, tetragonal phase) layer was produced on the surface of the specimen below $1{\mu}m$ in thickness at $600^{\circ}C$, and grown about $2{\mu}m$ at $700^{\circ}C$ and with $110{\mu}m$ in thickness at $1000^{\circ}C$. Above $900^{\circ}C$, (110) plane of the crystal on the surface of rutile-$TiO_2$ layer was grown.

Electrical response of tungsten diselenide to the adsorption of trinitrotoluene molecules (폭발물 감지 시스템 개발을 위한 TNT 분자 흡착에 대한 WSe2 소자의 전기적 반응 특성 평가)

  • Chan Hwi Kim;Suyeon Cho;Hyeongtae Kim;Won Joo Lee;Jun Hong Park
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.33 no.6
    • /
    • pp.255-260
    • /
    • 2023
  • As demanding the detection of explosive molecules, it is required to develop rapidly and precisely responsive sensors with ultra-high sensitivity. Since two-dimensional semiconductors have an atomically thin body nature where mobile carriers accumulate, the abrupt modulation carrier in the thin body channel can be expected. To investigate the effectiveness of WSe2 semiconductor materials as a detection material for TNT (Trinitrotoluene) explosives, WSe2 was synthesized using thermal chemical vapor deposition, and afterward, WSe2 FETs (Field Effect Transistors) were fabricated using standard photo-lithograph processes. Raman Spectrum and FT-IR (Fourier-transform infrared) spectroscopy reveal that the adsorption of TNT molecules induces the structural transition of WSe2 crystalline. The electrical properties before and after adsorption of TNT molecules on the WSe2 surface were compared; as -50 V was applied as the back gate bias, 0.02 μA was recorded in the bare state, and the drain current increased to 0.41 μA with a dropping 0.6% (w/v) TNT while maintaining the p-type behavior. Afterward, the electrical characteristics were additionally evaluated by comparing the carrier mobility, hysteresis, and on/off ratio. Consequently, the present report provides the milestone for developing ultra-sensitive sensors with rapid response and high precision.

Extraction of Moho Undulation of the Korean Peninsula from Gravity Anom-alies (중력이상을 이용한 한반도 모호면 추출에 관한 연구)

  • 김정우;조진동;김원균;민경덕;황재하;이윤수;박찬홍;권재현;황종선
    • Economic and Environmental Geology
    • /
    • v.36 no.3
    • /
    • pp.213-223
    • /
    • 2003
  • We estimated the Moho depth of Korean Peninsula from gravity anomalies and digital elevation model. The satellite radar altimetry-derived global free-air gravity model was used to ensure the homogeneity in both data and frequency domains of the original data. Two different methods were implemented to calculate the Moho depth; the wavenumber correlation analysis (Kim et al., 2000a) and the power spectrum analysis. The former method calculates depth-to-the-Moho by correlating topographic gravity effect with free-air gravity anomaly in the wavenumber domain under the assumption that the study area is not isostatically compensated. The latter one, on the other hand, considers the different density layers (i.e., Conrad and Moho), using complete Bouguer gravity anomaly in the Frequency domain of the Fourier transform. The correlation coefficient of the two Moho model is 0.53, and methodology and numerical error are mainly responsible for any mismatch between the two models. In order to integrate the two independentely-estimated models, we applied least-squares adjustment using the differenced depth. The resultant model has mean and standard deviation Moho depths of 32.0 km and 2.5 km with (min, max) depths of (20.3, 36.6) kms. Although this result does not include any topographic gravity effect, however, the validity of isostasy and the role of local stress field in the study area should be further studied.