• 제목/요약/키워드: four point bending test

검색결과 164건 처리시간 0.023초

Performance of Adhesives in Glulam after Short Term Fire Exposure

  • Quiquero, Hailey;Chorlton, Bronwyn;Gales, John
    • 국제초고층학회논문집
    • /
    • 제7권4호
    • /
    • pp.299-311
    • /
    • 2018
  • As engineered timber such as Glulam is seeing increasing use in tall timber buildings, building codes are adapting to allow for this. In order for this material to be used confidently and safely in one of these applications, there is a need to understand the effects that fire can have on an engineered timber structural member. The post-fire resilience aspect of glulam is studied herein. Two sets of experiments are performed to consider the validity of zero strength guidance with respect to short duration fire exposure on thin glulam members. Small scale samples were heated in a cone calorimeter to different fire severities. These samples illustrated significant strength loss but high variability despite controlled quantification of char layers. Large scale samples were heated locally using a controlled fuel fire in shear and moment locations along the length of the beam respectively. Additionally, reduced cross section samples were created by mechanically carving a way an area of cross section equal to the area lost to char on the heated beams. All of the samples were then loaded to failure in four-point (laterally restrained) bending tests. The beams that have been burnt in the shear region were observed as having a reduction in strength of up to 34.5% from the control beams. These test samples displayed relatively little variability, apart from beams that displayed material defects. The suite of testing indicated that zero strength guidance may be under conservative and may require increasing from 7 mm up to as much as 23 mm.

사전균열이 발생한 철근콘크리트 보의 외적 포스트텐셔닝 전단보강에서 보강깊이의 효과 (Strengthening Depth Effect in Externally Post-tensioning Shear Strengthening of Pre-cracked Reinforced Concrete Beam)

  • 이수헌;신경재;이희두
    • 대한건축학회논문집:구조계
    • /
    • 제34권11호
    • /
    • pp.19-26
    • /
    • 2018
  • This paper presents the shear strengthening effect of externally post-tensioning (EPT) method using high-strength steel rod in pre-cracked reinforced concrete (RC) beams. Three- and four-point bending tests were performed on a total of 8 specimens by adjusting the strengthening depths in the deviator position of EPT. The effective strengthening depths were 435, 535, and 610 mm. The pre-loading up to about 2/3 of ultimate load capacity measured in unstrengthened RC beam were applied in the beam to be post-tensioned. The EPT method was then applied to the pre-damaged RC beams and re-loading was added until the end of the test. EPT restored deflections of 3 mm or more, which account for about 40% of deflection when the pre-loading was applied. The shear strengthening increases more than 3 times and 36~107% in terms of the stiffness and load-carrying capacity compared to unstrengthening RC beams. The increased load-carrying capacities of the post-tensioned beam with strengthening depths of 435 and 535 mm are almost the same as 36~61%, and those of 610 mm are 84~107%, which shows the greatest shear strengthening effect.

Dynamics of moored arctic spar interacting with drifting level ice using discrete element method

  • Jang, HaKun;Kim, MooHyun
    • Ocean Systems Engineering
    • /
    • 제11권4호
    • /
    • pp.313-330
    • /
    • 2021
  • In this study, the dynamic interaction between an Arctic Spar and drifting level ice is examined in time domain using the newly developed ice-hull-mooring coupled dynamics program. The in-house program, CHARM3D, which is the hull-riser-mooring coupled dynamic simulator is extended by coupling with the open-source discrete element method (DEM) simulator, LIGGGHTS. In the LIGGGHTS module, the parallel-bonding method is implemented to model the level ice using an assembly of multiple bonded spherical particles. As a case study, a spread-moored Artic Spar platform, whose hull surface near waterline is the inverted conical shape, is chosen. To determine the breaking-related DEM parameter (the critical bonding strength), the four-point numerical bending test is used. A series of numerical simulations is systematically performed under the various ice conditions including ice drift velocity, flexural strength, and thickness. Then, the effects of these parameters on the ice force, platform motions, and mooring tensions are discussed. The simulations reveal various features of dynamic interactions between the drifting ice and moored platform for various ice conditions including the novel synchronous resonance at low ice speed. The newly developed simulator is promising and can repeatedly be used for the future design and analysis including ice-floater-mooring coupled dynamics.

Vibration behaviour of cold-formed steel and particleboard composite flooring systems

  • AL Hunaity, Suleiman A.;Far, Harry;Saleh, Ali
    • Steel and Composite Structures
    • /
    • 제43권3호
    • /
    • pp.403-417
    • /
    • 2022
  • Recently, there has been an increasing demand for buildings that allow rapid assembly of construction elements, have ample open space areas and are flexible in their final intended use. Accordingly, researchers have developed new competitive structures in terms of cost and efficiency, such as cold-formed steel and timber composite floors, to satisfy these requirements. Cold-formed steel and timber composite floors are light floors with relatively high stiffness, which allow for longer spans. As a result, they inherently have lower fundamental natural frequency and lower damping. Therefore, they are likely to undergo unwanted vibrations under the action of human activities such as walking. It is also quite expensive and complex to implement vibration control measures on problematic floors. In this study, a finite element model of a composite floor reported in the literature was developed and validated against four-point bending test results. The validated FE model was then utilised to examine the vibration behaviour of the investigated composite floor. Predictions obtained from the numerical model were compared against predictions from analytical formulas reported in the literature. Finally, the influence of various parameters on the vibration behaviour of the composite floor was studied and discussed.

일축대칭 비조밀 스텝 I형보의 비탄성 좌굴강도 산정을 위한 단순방법 (An Alternative Simplified Approach in Solving for the Inelastic Buckling Strengths of Singly Symmetric Non-Compact Stepped I-Beams)

  • 셰인;박종섭
    • 대한토목학회논문집
    • /
    • 제39권1호
    • /
    • pp.123-134
    • /
    • 2019
  • 본 연구에서는 비조밀 플랜지 단면이 적용된 일축대칭 스텝보의 비탄성 횡-비틀림 좌굴에 대한 새로운 설계식을 제안하였다. 범용유한요소해석 프로그램인 ABAQUS와 회귀분석프로그램인 MINITAB을 사용하여 설계식을 도출하였다. 실험 및 해석에 적용된 매개변수는 플랜지 보강의 길이변수(${\alpha}$), 폭변수(${\beta}$), 두께변수(${\gamma}$)와 비지지길이 비($L_b/h$)가 고려되었으며, 경계조건은 스텝보의 양단을 횡지지하고 힌지/롤러 경계조건 즉 단순보 경계조건을 적용하였다. 제안식 및 해석결과와 비교하기 위한 실험의 경우, 실험체 지간 중앙에서 같은 거리에 있는 2점 하중을 상부플랜지에 가력하여 거동특성을 분석하였다. 본 논문에서 제안된 설계식은 실험결과와 유한요소해석결과의 비교분석을 통하여 합리적인 설계식임을 확인할 수 있었으며, 비조밀플랜지단면이 적용된 일축대칭 스텝보의 횡비틀림좌굴을 계산하는 데 신뢰성 있는 안전한 값을 나타내고 있다.

후속열처리 및 고온고습 조건에 따른 Cu 배선 확산 방지층 적용을 위한 ALD RuAlO 박막의 계면접착에너지에 관한 연구 (Effects of Post-annealing and Temperature/Humidity Conditions on the Interfacial Adhesion Energies of ALD RuAlO Diffusion Barrier Layer for Cu Interconnects)

  • 이현철;정민수;배병현;천태훈;김수현;박영배
    • 마이크로전자및패키징학회지
    • /
    • 제23권2호
    • /
    • pp.49-55
    • /
    • 2016
  • 차세대 반도체의 초미세 Cu 배선 확산방지층 적용을 위해 원자층증착법(atomic layer deposition, ALD) 공정을 이용하여 증착한 RuAlO 확산방지층과 Cu 박막 계면의 계면접착에너지를 정량적으로 측정하였고, 환경 신뢰성 평가를 수행하였다. 접합 직후 4점굽힘시험으로 평가된 계면접착에너지는 약 $7.60J/m^2$으로 측정되었다. $85^{\circ}C$/85% 상대습도의 고온고습조건에서 500시간이 지난 후 측정된 계면접착에너지는 $5.65J/m^2$로 감소하였으나, $200^{\circ}C$에서 500시간 동안 후속 열처리한 후에는 $24.05J/m^2$으로 계면접착에너지가 크게 증가한 것으로 평가되었다. 4점굽힘시험 후 박리된 계면은 접합 직후와 고온고습조건의 시편의 경우 RuAlO/$SiO_2$ 계면이었고, 500시간 후속 열처리 조건에서는 Cu/RuAlO 계면인 것으로 확인되었다. X-선 광전자 분광법 분석 결과, 고온고습조건에서는 흡습으로 인하여 강한 Al-O-Si 계면 결합이 부분적으로 분리되어 계면접착에너지가 약간 낮아진 반면, 적절한 후속 열처리 조건에서는 효과적인 산소의 계면 유입으로 인하여 강한 Al-O-Si 결합이 크게 증가하여 계면접착에너지도 크게 증가한 것으로 판단된다. 따라서, ALD Ru 확산방지층에 비해 ALD RuAlO 확산방지층은 동시에 Cu 씨앗층 역할을 하면서도 전기적 및 기계적 신뢰성이 우수할 것으로 판단된다.

플라스마 처리된 폴리에틸렌 섬유의 적용 부위가 복합 레진의 굴곡 강도에 미치는 영향 (THE EFFECT OF PLASMA-TREATED POLYETHYLENE FIBER ON THE FLEXURAL STRENGTH OF COMPOSITE RESIN IN VARIOUS APPLIED PORTIONS)

  • 오용진;오남식;이근우
    • 대한치과보철학회지
    • /
    • 제35권2호
    • /
    • pp.401-412
    • /
    • 1997
  • There has been many researches aimed at reinforcing the strength of resin, and these have led to the development and use of numerous materials in recent years. A case in point, is the recent development of plasma-treated polyethylene fiber which has been used mainly in fixed provisional restoration to reduce the incidence of fractures. This study aims at assessing whether plasma-treated polyethylene fiber as applied to composite resin is effective in increasing the flexural strength and how applied portions affect this. Twenty-four applied and eight unapplied composite resin bars were fabricated. Twenty-four applied specimens were divided into three groups. Plasma treated polyethylene fiber was applied to the groups each with different portions of composite resin. In the first group, plasma-treated polyethylene fiber was not applied. In the second group, fiber was applied to the compression side of composite resin. Fiber was applied to the tension side in the third group, while fiber was embedded in the tension side of the composite resin in the fourth group. Each specimen was tested by use of a three-point bending strength test with an instron testing machine, and the flexural strength was calculated. The following results were obtained. : 1. Under the conditions of this study, the third and fourth groups demonstrated a statistically greater flexural strength compared to the first and second groups. 2. But there was no statistically significant difference, not only between the first group and the second group, but also between the third group and the fourth group. Taken together, it can be concluded that plasma-treated polyethylene fiber applied to composite resin is an effective method in increasing flexural strength, and the best way of increasing the flexural strength is by application of plasma-treated polyethylene fiber to the tension side, or the embedding of same in composite resin. It must be mentioned however that this test used a static single-load test method. This method determined the maximum stresses that could be tolerated, but this might not be valid where the prediction of clinical failure is concerned. In order therefore to clinically utilize plasma-treated polyethylene fiber to reinforce the composite resin, it is suggested that a further study which considers the various loads be undertaken.

  • PDF

포아슨 비의 변화를 고려한 수정 ECM 모델 개발 및 아스팔트 콘크리트의 저온 특성 연구 (Development of Modified Effective Crack Model to Take into Account for variation of Poisson's ratio and Low-Temperature Properties of Asphalt Concrete)

  • 권승준;도영수;김광우
    • 한국도로학회논문집
    • /
    • 제3권1호
    • /
    • pp.185-197
    • /
    • 2001
  • 본 연구는 온도에 따라 특성이 변하는 아스팔트 콘크리트의 파괴인성을 규명하기 위하여 기존의 유효균열 모델을 수정하는 연구를 다루고 있다. 본래의 ECM모델은 콘크리트와 같은 고체에 적용되도록 개발되어 재료의 포아슨 비를 고려하지 않는다. 하지만 아스팔트 콘크리트는 온도변화에 민감하여 온도에 따라 포아슨 비가 변화하므로 다양한 온도하에서 정확한 파괴 특성을 알기 위해서는 포아슨 비가 고려되어져야 한다. 3개의 개질아스팔트 결합재를 포함한 4가지 결합재를 사용하여 밀입도 아스팔트 혼합물을 제조하여 초기균열 보에 대한 3점 휨 시험을 $-5^{\circ}C$부터 $-35^{\circ}C$까지에서 수행하였다. 탄성계수, 휨강도 및 파괴인성을 시험을 통하여 구하였다. 시험결과 포아슨비가 고려되는 수정 ECM 공식을 사용하므로서 보다 정확한 값들을 얻을 수 있었다. 폴리머 개질 아스팔트 혼합물이 일반아스팔트 혼합물에 비하여 더 낮은 저온하에서 더 높은 강성과 파괴인성을 유지함을 알 수 있었다.

  • PDF

소성가공에 따른 STS 304L 재료의 기계적 특성 및 피로평가 (Evaluation of Mechanical Properties and Fatigue Behavior of STS 304L due to Plastic Working)

  • 심현보;김영균;서창민
    • 대한기계학회논문집A
    • /
    • 제41권7호
    • /
    • pp.635-643
    • /
    • 2017
  • STS 304L 강재의 냉간압연율의 증가에 따라 t가 1.5 mm에서 1.1 mm까지 감소하면 인장강도, 항복강도, 경도치 및 UFT피로시험의 피로한도는 선형적으로 증가하였다. t=1.5 mm, t=1.4 mm, t=1.3 mm 및 t=1.1 mm인 4가지 시험편의 UFT피로시험(R= -1)결과, 회전굽힘피로시험(R= -1)의 결과처럼 $10^6$ 영역에서 S-N곡선의 피로한도가 절점(knee point)을 형성하였고, 기가사이클 피로에서 생기는 현상인 피로한도가 추가로 감소하지않았다. 또 t=1.1 mm인 경우 가장 높은 피로한도 345 MPa로 되었고, 원소재(t=1.5 mm)에 대하여 64.3 % 증가하였다. 냉간압연율에 따른 UFT피로시험결과 많은 작은 표면균열이 티어링(tearing)하면서 발생, 성장, 서로 합체하였다.

적층구성 및 곡률 변화에 따른 CFRP 적층쉘의 관통특성 (The Penetration Characteristics of CFRP Laminated Shells on the Change of Stacking Sequences and Curvatures)

  • 조영재;김영남;양인영
    • 한국자동차공학회논문집
    • /
    • 제14권1호
    • /
    • pp.79-85
    • /
    • 2006
  • CFRP(Carbon Fiber Reinforced Plastics) of the advanced composite materials as structural materials for vehicle, has a wide application in light-weigh structural materials of airplanes, ships and automobiles because of high strength and stiffness, However, there is a design variable to be considered in practical application of the laminate composite materials, these materials are vulnerable to transverse impact. This paper is to study the effects of stacking sequence and curvature on the penetration characteristics of composite laminate shell. They are stacked to $[0_3/90_3]S,\;[90_3/0_3]s\;and\;[0_2/90_3/0]s,\;[90_2/0_3/90]s$ and their interlaminar number two and four. They are manufactured to various curvature radius (R=100, 150, 200mm and $\infty$), When the specimen is subjected to transverse impact by a steel ball, the velocity of the steel ball was measured both before and after impact by determing the time for it to pass two ballistics-screen sensors located a known distance apart. The critical penetration energy of specimen A and B with less interfaces were a little higher than those of C and D. As the curvature increases, the critical penetration energy increases linearly because the resistance to the in-plane deformation as well as bending deformation increases, which need higher critical penetration energy. The specimen A and C have higher critical penetration energy than B and D because of different stacking sequences. We examined crack length through a penetration test. For the specimen A with 2interfaces, the longest circumferential direction crack length were observed on the first interface from the impact point. For the specimen B 4-interface, the longest circumferential direction crack length were observed on the second interface from the impact point.