• Title/Summary/Keyword: foundations

Search Result 1,537, Processing Time 0.029 seconds

A Numerical Study on the Effect of Steel Casing on Bearing Capacity of Drilled Shafts for Marine Bridges (수치해석을 이용한 국내 해상교량 현장타설말뚝의 강관지지효과)

  • Lee, Juhyung;Shin, Hyu-Soung;Park, Minkyung;Park, Jae Hyun;Kwak, Kiseok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3C
    • /
    • pp.149-158
    • /
    • 2008
  • This study is concerned with the characteristics of the behavior of drilled shafts with steel casing, a material that is used for large bridge foundations in Korea, and especially for weak submerged ground conditions. The effect of steel casing on bearing capacity of drilled shafts was also verified in this study. Three large drilled shafts with 1.8, 2.4, 3.0m diameter respectively were selected, and 3-D finite element analysis has been undertaken on the following three models: 1) drilled shafts without steel casing, 2) drilled shafts with steel casing, 3) steel-concrete composite drilled shafts. Interface element between concrete core and steel casing was taken into account, and ground conditions and load combinations were applied which had been considered in the fields. Detailed characteristics of the stress and displacement distributions were evaluated to understand the characteristics of the behavior of the drilled shafts. Based on the study performed, the steel casing used as load-carrying materials in the drilled shafts can reduce the horizontal and vertical displacement of drilled shafts by 32~37% and 15~19% respectively compared with drilled shafts without steel casing.

Development of Customer Safety Model of Unsignalized Intersections on the Community Road (생활도로내 비신호교차로 이용자 안전도 모형 개발 - 서울시 생활도로내 비신호교차로를 중심으로 -)

  • Lee, Hyeong Rok;Chang, Il Joon;Lee, Soo Beom;Kim, Jang Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.3D
    • /
    • pp.205-213
    • /
    • 2010
  • The unsignalized intersections in a community road in the city of Seoul have 3,753 traffic accidents(9%) of total 41,702 cases in 2008, not high in the occurrence rate of traffic accidents, but seem to have a quite high potential of accidents due to the unreasonable and insufficient operation of systems and facilities in the part of traffic foundations. In particular, the un-signalized intersections in a community road have an insufficient measure for safety as compared to the crossroads with signals, and there are few analysis of traffic accidents and domestic researches on the model of affecting factors. Our country also has no concept of passing priority in operating a crossroad without signals, differently from foreign countries, so the researches and safety measures for improving the safety of a crossroad without signals in a community road are urgent. Therefore, this research has developed a safety model for a crossroad without signals in a community road based on the safety image data collected through individual interviews and questionnaires for the users of unsignalized intersections in a community road, and confirmed that legal systems, road facilities, personal factors, etc. have the biggest effect on the safety of drivers. It was confirmed that the clarity of passing methods, establishment of legal systems, etc. have the biggest effect on safety in order to raise the safety of unsignalized intersections in a community road, which drivers desire.

Effects of Individual Motivation on Turnover Intention among Social Workers : Focused on the mediation effects of multiple commitment (사회복지사의 개인적 동기가 이직의도에 미치는 영향 - 다중몰입의 매개효과를 중심으로 -)

  • Moon, Young Joo
    • Korean Journal of Social Welfare Studies
    • /
    • v.42 no.2
    • /
    • pp.493-523
    • /
    • 2011
  • This study set out to investigate the effects of individual motivation on turnover intention among social workers and examine their turnover intentions in details by focusing on the mediation effects of multiple commitment. To be specific, it aimed to propose and test a prediction model for social workers' turnover intentions based on the Self-determination Theory and Theory of Planned Behavior. For those purposes, a mail survey was taken among social workers working for use facilities, residential facilities, public health centers, social welfare foundations and associations, and all kinds of centers and institutions in 15 cities and provinces across the nation. Total 1,918 questionnaires were distributed, and 1,671 ones were returned, and 979 whose respondents expressed a turnover intention were used in final analysis. The analysis results indicate that psychological motivation of social workers had direct impacts on their turnover intention. However, their role stress had no direct impacts on their turnover intention, which suggests that the impulsive routes model for turnover intention is supported only in psychological motivation and job characteristics. Secondly, their psychological and job motivation turned out to have indirect impacts on turnover intention through the multiple commitment, which suggests that the reflective routes model for turnover intention is supported in all career, job, and organizational commitment. Career commitment had the most significant impacts on turnover intention, being followed by job commitment and organizational commitment in the order, which suggests that the social welfare academy should increase their interest in career commitment. Based on the findings, the study proposed implication for the career management plans, plans for human resources

Scour Impact on the Horizontal Bearing Capacity of Pier-Type Dolphin Structures (잔교식 돌핀 구조물의 수평 지지력에 세굴이 미치는 영향 검토)

  • Tae Young Jeong;Su Won Kang;Kyu Won Kim;Jong Hwa Won;Chan Joo Kim
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.35 no.6
    • /
    • pp.138-145
    • /
    • 2023
  • A study using numerical analysis techniques was conducted to examine the scour effect of pier-type dolphin structures installed in the domestic marine environment, and the effect of scour on horizontal bearing capacity was examined. In this study, we designed the berthing structures, taking into account the environmental and ground conditions of the target maritime area, and after calculating the predicted scour area, stability evaluation was performed by removing the ground elements of the area. The increase in scour depth was found to induce a direct decrease in horizontal bearing capacity due to soil loss in contact with the foundation, establishing a relationship that increases horizontal displacement. However, in the foundation designed to withstand the design load by reflecting the safety rate, the increase in horizontal displacement formed by possible scour is not large, which did not have a dominant effect on the horizontal bearing capacity of the foundation. In the future, research is required to analyze the impact of each factor and formalize evaluation and design techniques to evaluate the scour safety of marine foundations and pier-type structures installed in various ground conditions and structural formats.

The Study for Reduction Effect of Riverbed Scour due to Shape of Vanes (베인 형태에 따른 하상세굴 저감 효과에 관한 연구)

  • Hae Min Noh;Ho Jin Lee;Sung Duk Kim
    • Journal of Korean Society of Disaster and Security
    • /
    • v.16 no.2
    • /
    • pp.57-63
    • /
    • 2023
  • Recently, Heavy rains and super typhoons occurred by climate change cause a lot of damage in Korea. In order to reduce such damage, various types of river maintenance projects are being promoted, but it is difficult to maintain the balance of rivers in Korea with distinct flood and dry seasons. In particular, river structures installed as a river maintenance project cause various problems such as scouring of structures and their foundations during floods and river bed changes. In order to reduce such bed scour, various vanes are installed in the bend of the river, and various bed scour reduction effects appear depending on the size, arrangement, and shape of the vanes. The vane regenerates the secondary flow in the opposite direction to the secondary flow generated by the centrifugal force, thereby reducing scour around the outer bed and promoting deposition. The theory of this study uses the governing equation applying the continuity equation that satisfies the law of conservation of mass and the momentum equation that satisfies the conservation of momentum, and measures the overall average flow velocity change rate according to design factors to investigate the effect of vanes under various conditions. Both the average and cross-sectional flow velocities decreased in both the trapezoidal vane and the square vane. In addition, vanes installed perpendicularly or inclined to the direction of river flow generate a secondary flow in the opposite direction to the secondary flow generated by centrifugal force, thereby canceling the secondary flow of centrifugal force, so the effect of the vane appears.

Conceptual analysis of nursing students' clinical competency in simulation-based practical training (시뮬레이션 실습 교육에서 나타난 간호대학생의 임상수행능력에 대한 개념분석)

  • Cho-Won Lee;Eun-Young Kim
    • Journal of the Korean Applied Science and Technology
    • /
    • v.40 no.5
    • /
    • pp.1176-1190
    • /
    • 2023
  • The purpose of this study was to clarify the attributes of the concept of clinical performance skills in simulation-based practical training and to organize them in order to establish theoretical foundations for clinical competence. The research method employed was the concept analysis process of Walker and Avant (2011). Papers related to clinical competence published between January 2000 and April 2023 were selected by searching various databases such as PubMed, CINAHL, Ovid-Medline, DBpia, KISS, and others. The attributes of clinical competence were found to be (1) the clinical competence of knowledge, judgment, and skills, (2) Adaptability to Changing Healthcare Environment (3) the ability to perform nursing roles appropriately in response to the demands of nursing subjects. This study is significant as a concept analysis study that recognizes the importance of nursing from a nursing perspective in a situation where research on clinical competence is active in simulation-based training. Based on the results of this study, it is necessary to develop training programs and tools including the attributes of clinical competence in simulation nursing education and to measure the effectiveness of the programs using them. nursing perspective in a situation where research on clinical competence is active. Based on the results of this study, it is necessary to develop training programs and tools including the attributes of clinical competence in simulation nursing education and to measure the effectiveness of the programs using them.

Experimental study on the vertical bearing behavior of nodular diaphragm wall in sandy soil based on PIV technique

  • Jiujiang Wu;Longjun Pu;Hui Shang;Yi Zhang;Lijuan Wang;Haodong Hu
    • Geomechanics and Engineering
    • /
    • v.35 no.2
    • /
    • pp.195-208
    • /
    • 2023
  • The nodular diaphragm wall (NDW) is a novel type of foundation with favorable engineering characteristics, which has already been utilized in high-rise buildings and high-speed railways. Compared to traditional diaphragm walls, the NDW offers significantly improved vertical bearing capacity due to the presence of nodular parts while reducing construction time and excavation work. Despite its potential, research on the vertical bearing characteristics of NDW requires further study, and the investigation and visualization of its displacement pattern and failure mode are scant. Meanwhile, the measurement of the force component acting on the nodular parts remains challenging. In this paper, the vertical bearing characteristics of NDW are studied in detail through the indoor model test, and the displacement and failure mode of the foundation is analyzed using particle image velocimetry (PIV) technology. The principles and methods for monitoring the force acting on the nodular parts are described in detail. The research results show that the nodular part plays an essential role in the bearing capacity of the NDW, and its maximum load-bearing ratio can reach 30.92%. The existence of the bottom nodular part contributes more to the bearing capacity of the foundation compared to the middle nodular part, and the use of both middle and bottom nodular parts increases the bearing capacity of the foundation by about 9~12% compared to a single nodular part of the NDW. The increase in the number of nodular parts cannot produce a simple superposition effect on the resistance born by the nodular parts since the nodular parts have an insignificant influence on the exertion and distribution of the skin friction of NDW. The existence of the nodular part changes the displacement field of the soil around NDW and increases the displacement influence range of the foundation to a certain extent. For NDWs with three different nodal arrangements, the failure modes of the foundations appear to be local shear failures. Overall, this study provides valuable insights into the performance and behavior of NDWs, which will aid in their effective utilization and further research in the field.

Evaluation of the Dynamic Behavior of Inclined Tripod Micropiles Using Dynamic Centrifuge Test (원심모형실험을 이용한 그룹 삼축 마이크로파일의 동적거동 평가)

  • Kim, Yoon-Ah;Kwon, Tae-Hyuk;Kim, Jongkwan;Han, Jin-Tae;Kim, Jae-Hyun;An, Sung-Yul
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.12
    • /
    • pp.93-102
    • /
    • 2023
  • Despite recent modifications to building structural standards emphasizing the seismic stability of building foundations, the current design focus remains solely on vertical support, resulting in insufficient consideration of horizontal loads during earthquakes. In this study, we evaluated the dynamic behavior of inclined tripod micropiles (ITMP), which provide additional seismic resistance against horizontal and vertical loads during earthquakes. A comparison of the dynamic characteristics, such as acceleration, displacement, bending moment, and axial force, of ITMP with a 15° installation angle and normal vertical micropiles with a 0° installation angle was performed using dynamic centrifuge model tests. Results show that under moderate seismic loads, the proposed ITMP exhibited lower acceleration responses than the vertical micropiles. However, when subjected to a long-period strong seismic excitation, such as sine (2 Hz), ITMP showed greater responses than the vertical micropiles in terms of acceleration and settlement. These results indicate that the use of ITMP reduces the amplif ication of short-period (high-f requency) contents compared with the use of vertical micropiles. Therefore, ITMP can be used to enhance seismic performance of structures.

A Study on the Concept Definition and Institutional Foundations of Local Forestry Using the Delphi Technique (델파이 기법을 적용한 지역임업 개념의 정의와 제도 기반에 관한 연구)

  • Ju Yeon Kim;Jae Hyun Kim
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.2
    • /
    • pp.239-258
    • /
    • 2024
  • In the face of complex crises such as a shrinking society, regional imbalance, and climate change, there is a need to seek sustainable development in local communities. In the forest sector, attempts are being made to link forest resources with local industries. However, the current support system, which is centered on the central government, has limitations in achieving sustainable forest management. On the other hand, the international community is actively promoting a shift in systems by introducing the concept of local forestry, which emphasizes local initiatives to achieve sustainable forest management. However, in the Republic of Korea, the concept of local forestry is still unclear, which hinders the promotion of a paradigm shift. In this paper, we applied the Delphi technique to conduct three surveys of 29 academics, administrators, and field experts in the Republic of Korea. The aim was to define the concept of local forestry that is suitable for domestic conditions and identify institutional measures to establish and revitalize it. The results showed that local forestry can be defined as a broad concept that is both consultative and systemic in nature and that an institutional approach that supports actors and their activities is necessary to revitalize local forestry.

Dynamic Shear Behavior Characteristics of PHC Pile-cohesive Soil Ground Contact Interface Considering Various Environmental Factors (다양한 환경인자를 고려한 PHC 말뚝-사질토 지반 접촉면의 동적 전단거동 특성)

  • Kim, Young-Jun;Kwak, Chang-Won;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.1
    • /
    • pp.5-14
    • /
    • 2024
  • PHC piles demonstrate superior resistance to compression and bending moments, and their factory-based production enhances quality assurance and management processes. Despite these advantages that have resulted in widespread use in civil engineering and construction projects, the design process frequently relies on empirical formulas or N-values to estimate the soil-pile friction, which is crucial for bearing capacity, and this reliance underscores a significant lack of experimental validation. In addition, environmental factors, e.g., the pH levels in groundwater and the effects of seawater, are commonly not considered. Thus, this study investigates the influence of vibrating machine foundations on PHC pile models in consideration of the effects of varying pH conditions. Concrete model piles were subjected to a one-month conditioning period in different pH environments (acidic, neutral, and alkaline) and under the influence of seawater. Subsequent repeated direct shear tests were performed on the pile-soil interface, and the disturbed state concept was employed to derive parameters that effectively quantify the dynamic behavior of this interface. The results revealed a descending order of shear stress in neutral, acidic, and alkaline conditions, with the pH-influenced samples exhibiting a more pronounced reduction in shear stress than those affected by seawater.