• Title/Summary/Keyword: foundation on thermal insulation

Search Result 8, Processing Time 0.019 seconds

A Study on the Basic Properties of Foam Glass Aggregate for the Application of Insulated Foundation (단열바닥기초 적용을 위한 발포유리 골재의 기초 특성 평가)

  • Sang-Heon, Kim;Soo-Young, Moon;Hyun-Soo, Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.420-427
    • /
    • 2022
  • The present study evaluated the physical, mechanical and thermal properties of the foam glass aggregate and insulation foundation with this, in order to promote the use of insulated foundations using domestically produced foamed glass aggregates. As a result of the evaluation, the compacted foam glass aggregate showed at the same level as overseas products in terms of unit volume mass, particle size and other characteristics, and a compressive strength of 40.6 N/cm2, which was superior to the existing organic insulation materials such as XPS. And the thermal conductivity of the foam glass aggregate was 0.84 W/mK, and the thermal transmittance of the specimen simulating the insulation foundation was 0.37 W/mK, so the thermal conductivity of the foam glass aggregate was estimated to be 0.80 W/mK. With these results, it was found that it is possible to use the insulation foundation with re-producted foam glass aggregate by crushing the waste from the process of producing foam glass products.

Seismic vulnerability of reinforced concrete building structures founded on an XPS layer

  • Koren, David;Kilar, Vojko
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.939-963
    • /
    • 2016
  • According to the new directives about the rational and efficient use of energy, thermal bridges in buildings have to be avoided, and the thermal insulation (TI) layer should run without interruptions all around the building - even under its foundations. The paper deals with the seismic response of multi-storeyed reinforced concrete (RC) frame building structures founded on an extruded polystyrene (XPS) layer placed beneath the foundation slab. The purpose of the paper is to elucidate the problem of buildings founded on a TI layer from the seismic resistance point of view, to assess the seismic behaviour of such buildings, and to search for the critical parameters which can affect the structural and XPS layer response. Nonlinear dynamic and static analyses were performed, and the seismic response of fixed-base (FB) and thermally insulated (TI) variants of nonlinear RC building models were compared. Soil-structure interaction was also taken into account for different types of soil. The results showed that the use of a TI layer beneath the foundation slab of a superstructure generally induces a higher peak response compared to that of a corresponding system without TI beneath the foundation slab. In the case of stiff structures located on firm soil, amplification of the response might be substantial and could result in exceedance of the superstructure's moment-rotation plastic hinge capacities or allowable lateral roof and interstorey drift displacements. In the case of heavier, slenderer, and higher buildings subjected to stronger seismic excitations, the overall response is governed by the rocking mode of oscillation, and as a consequence the compressive strength of the XPS could be insufficient. On the other hand, in the case of low-rise and light-weight buildings, the friction capacity between the layers of the applied TI foundation set might be exceeded so that sliding could occur.

Consumer recognition and mechanical property comparison of wetsuit material for diving (다이빙용 웨트수트(wetsuit) 소재에 대한 소비자 인식조사와 물성 비교)

  • Sang, Jeong Seon;Oh, Kyung Wha
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.20 no.4
    • /
    • pp.163-174
    • /
    • 2018
  • Consumer and property evaluation of wetsuit materials were conducted to obtain useful data for developing competitive products that meet consumer expectations and improving industrial competitiveness. Data were collected through online surveys of 213 domestic consumers who have experienced wearing wetsuit among marine leisure activities. Five types of commercial wet suit materials by brand and four types of commercial wet suit materials with the same quality by thickness were collected. Then, their physical properties, salt water resistance and thermal insulation rate were evaluated and compared. As a result, the most commonly used wetsuit material is 3 to 5 mm thick, and the basic jersey material is bonded on both sides. As a processing for imparting functionality, processing for improving warmth and reducing surface resistance are most frequently used. Consumers often feel uncomfortable when wearing a wetsuit, such as wearing comfort, weight, ease of movement, stretchability, and clothing pressure, which are different from those of casual wear. Also, mechanical strength and warmth were considered to be the most important criteria for selection of wetsuit material for purchase or rental. The mechanical properties of brand A and B were better than those of brand C, D, and E. Resilience and thermal shrinkage were better in brand C, D, and E. On the other hand, there was no significant difference in the physical properties due to the difference in thickness of the material at the same quality. Also, it was found that the thicker the material, the more stable it is in the heat. Brand A and B had superior salt water resistance than brand C, D, and E. In the thermal insulation test, brand A and B showed better insulation characteristics than brand C, D, and E, but the types of bonded fabric and surface finishing of materials were thought to have affected. In comparison of the thickness, the thicker the materials, the better the salt resistance and the thermal insulation.

An Approach to Model Ground-Coupled Building Foundation for Energy Simulation (Ground-Coupled 바닥구조체의 열전달 모델링)

  • 임병찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.7
    • /
    • pp.658-666
    • /
    • 2004
  • In this paper, a two-dimensional transient ground-coupled numerical model for slab-on-grade foundation is developed and integrated into EnergyPlus. A validation analysis is first presented to ensure that for the developed building foundation heat transfer module is properly implemented within EnergyPlus. Then, the predictions from the developed model are compared to those obtained from the simplified building foundation model currently used in EnergyPlus. The results show that the developed foundation heat transfer module accounts better for the effects of the ground thermal mass attributed to the ground than the simplified foundation model currently used in EnergyPlus.

Field Application of Foundation Mass Concrete Applying Hydration Heat Differential Method and Insulation Curing Method (매스콘크리트의 수화열 해석 및 현장 계측을 통한 수화발열량차 공법의 현장적용성)

  • Han, Jun-Hui;Lim, Gun-Su;Shin, Se-Jun;Jeon, Choung-Keun;Kim, Jong;Han, Min-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2023.05a
    • /
    • pp.229-230
    • /
    • 2023
  • In this study, the hydration heat differential method was applied to mass concrete structures, and the hydration heat analysis was compared and analyzed with on-site measurement results. The results showed that the temperature history measurements of mass concrete were managed at a difference of 8.4 ℃, and although there was some deviation in thermal stress, a similar trend was observed. Consequently, it was determined that the thermal stress on the surface of mass concrete is less than its tensile strength, which would prevent the occurrence of thermal cracks.

  • PDF

Prototype of Smart Foundation with Heating Devices (발열장치를 이용한 기능성 스마트 파운데이션의 구성 시안)

  • Hwang, Young-Mi;Lee, Jeong-Ran
    • Fashion & Textile Research Journal
    • /
    • v.14 no.4
    • /
    • pp.588-596
    • /
    • 2012
  • This research was intended to design an experimental girdle with thermal insulation function for adult women in their 20s. The design of the experimental girdle was based on the pattern of commercially available girdle. The final pattern of the experimental girdle was established according to the drawing equations determined based on the result of appearance evaluation. The equations were (waist circumference${\times}0.88$)/2 for waist circumference, (hip circumference${\times}0.77$)/2 for hip circumference, and (thigh circumference${\times}0.85$) for thigh circumference. In order to develop a heating device, the most effective fabric heater was adopted based on the experiments about the number of caron fibers, heater size and attachment site. Three heaters-one with a size of $14.5{\times}9.5$ cm, and the other two with the size of $8.0{\times}15.0$ cm-were attached to the areas corresponding to the lower abdomen and the hip, 5 cm below the waist. A heater was developed by connecting these heaters to a controller, 2 batteries (7.4 V 2000 mAh lithium polymer batteries) and a switch (for mode conversion between high/medium/low temperatures). The heater was integrated into the inside of the girdle, so that attachment and detachment were possible without the change of appearance. The tentative configuration plan was proposed for the development of a functional smart girdle with an excellent thermal insulation effect.

An application to HVAC control system based on occupants' thermal response in office buildings (공조제어 적용을 위한 재실자 온열반응 데이터의 유효성 분석에 관한 연구)

  • Han, Hyesim;Kim, Jonghun;Jeong, Hakgeun;Jang, Cheol-Yong
    • KIEAE Journal
    • /
    • v.14 no.4
    • /
    • pp.111-117
    • /
    • 2014
  • In South Korea, the government has recently enforced regulations associated with buildings. Temperature restriction in indoor environment is one of the common ways of energy reduction in order not to dissipate heating and cooling energy; however the people who are in restricted temperature feels uncomfortable. Furthermore, occupants cannot feel the same thermal sensation even they are in the same place. For the reason, occupants should express their thermal sensation and HVAC system should be able to apply their demand. It is proved by an adaptive principle. The adaptive model means that people react in ways which tend to restore their comfort, when change occurs such as to produce discomfort. In order to design HVAC control strategies based on adaptive model, we designated an existing office building as a reference building to gather data from actual field. Furthermore, we gathered occupants' thermal sensation and clothing insulation in real-time. We filtered the data with Kalman's filter method. The data was reasonable when there is an alarm messages for asking questionnaire. The response ratio were different in occupants' thermal condition. In conclusion, the filtered occupants' thermal sensation can be used as a real time HVAC control and input value of HVAC control.

Development and Evaluation of Smart Foundation with Heating Devices (발열장치를 이용한 보온 기능성 스마트 파운데이션의 개발 및 평가)

  • Hwang, Young-Mi;Lee, Jeong-Ran
    • Fashion & Textile Research Journal
    • /
    • v.15 no.2
    • /
    • pp.231-239
    • /
    • 2013
  • This research developed a smart girdle for adult women in their 20's that has an inserted carbon weaving heater to help with relief from coldness and abdominal disease through the thermal insulation effect. A pocket of powernet fabric was attached to the inside of the girdle for the easy insertion and separation of the heating device, while the heating device was fixed to a mesh material by cotton yarn and was wrapped with elastic lining material to prevent the mechanical devices from being exposed. A set of 3 hooks was attached to the center of the back of the heating device in consideration of convenience and mobility. Whereas the switch was inserted into around the right waistband, and the battery into the inner pocket around the waist, to integrate the heating device with the girdle. The satisfaction and usability of the fabricated smart girdle was verified by having research participants wear it to evaluate the appearance change caused by the device, the inconvenience of wearing/unwearing, mobility, and the satisfactory functionality of the device. As a result, the grand mean was evaluated to be high, with appearance (4.19), mobility (4.17), and functionality (4.51) being higher than 4.00; which indicates that the heat generation function of the smart girdle is effective. It may be said that such collection and analysis of data that reflect users' opinions have value and significance in that they can be grafted onto future research on new technology as well as they contribute to taking a step forward in the rapidly increasing research of smart clothing, with the new-type clothing equipped with new function.