• Title/Summary/Keyword: foundation modulus

Search Result 176, Processing Time 0.026 seconds

Static analysis of nonlinear FG-CNT reinforced nano-composite beam resting on Winkler/Pasternak foundation

  • Mostefa Sekkak;Rachid Zerrouki;Mohamed Zidour;Abdelouahed Tounsi;Mohamed Bourada;Mahmoud M Selim;Hosam A. Saad
    • Advances in nano research
    • /
    • v.16 no.5
    • /
    • pp.509-519
    • /
    • 2024
  • In this study, the static analysis of carbon nanotube-reinforced composites (CNTRC) beams resting on a Winkler-Pasternak elastic foundation is presented. The developed theories account for higher-order variation of transverse shear strain through the depth of the beam and satisfy the stress-free boundary conditions on the top and bottom surfaces of the beam. To study the effect of carbon nanotubes distribution in functionally graded (FG-CNT), we introduce in the equation of CNT volume fraction a new exponent equation. The SWCNTs are assumed to be aligned and distributed in the polymeric matrix with different patterns of reinforcement. The rule of mixture is used to describe the material properties of the CNTRC beams. The governing equations were derived by employing Hamilton's principle. The models presented in this work are numerically provided to verify the accuracy of the present theory. The analytical solutions are presented, and the obtained results are compared with the existing solutions to verify the validity of the developed theories. Many parameters are investigated, such as the Pasternak shear modulus parameter, the Winkler modulus parameter, the volume fraction, and the order of the exponent in the volume fraction equation. New results obtained from bending and stresses are presented and discussed in detail. From the obtained results, it became clear the influence of the exponential CNTs distribution and Winkler-Pasternak model improved the mechanical properties of the CNTRC beams.

Surface Characteristics of Titanium/Hydroxyapatite Double Layered Coating on Orthopedic PEEK by Magnetron Sputtering System (마그네트론 스퍼터링 시스템을 이용한 정형외과용 PEEK의 타이타늄/하이드록시아파타이트 이중 코팅층의 표면 특성 분석)

  • Kang, Kwan-Su;Jung, Tae-Gon;Yang, Jae-Woong;Woo, Su-Heon;Park, Tea-Hyun;Jeong, Yong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.3
    • /
    • pp.164-171
    • /
    • 2018
  • In this study, we have fabricated pure titanium (Ti)/hydroxyapatite (HA) double layer coating on medical grade PEEK from magnetron sputtering system, an investigation was performed whether the surface can be had more improve bio-active for orthopedi/dental applications than that of non-coated one. Pure Ti and HA coating layer were obtained by a radio-frequency and direct current power magnetron sputtering system. The microstructures surface, mechanical properties and wettability of the pure Ti/HA double layer deposited on the PEEK were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), nano-indentation, and contact angle test. According to the EDS and XRD results, the composition and crystal structure of pure Ti and HA coated surface were verified. The elastic modulus and hardness value were increased by pure Ti and HA coating, and the pure Ti/HA double layer coating surface has the highest value. The contact angle showed higher value for pure Ti/HA double layered coating specimens than that of non-coated (PEEK) surface.

The Characteristic of Strength for a Lime Stone in Donghae Area and Harden Cement Milk of Super Injection Grouting (동해 석회암과 SIG 고결체의 강도특성)

  • Park, Young-Ho;Kim, Nak-Young;Hong, Sa-Myun;Yook, Jeong-Hoon;Kim, Ki-Seog
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.137-145
    • /
    • 2004
  • Limestone zone in korea have been distributed to diagonal line so that it is wide from the Gangwondo to the Jeonlanamdo. The limestone cavity and fractured zone were formed by chemical weathering. Limestone cavity and fractured zone was reinforced with cemented milk(w/c=60%)by high pressure jet grouting by tripple -pipe to establish bridge foundation on the ground condition like limestone cavity. To analyze property of limestone and solid of cement milk(w/c=65%), mixed solid of cement, core NX size in the limestone cavity and fractured zone and compressive strength. Seismic tomograpy exploration was pcrforn1cd to analyze deformation modulus of limestone. The analysis suggests that deformation modulus of limestone has effect on uniaxial compressive strength, seismic velocity, seismic elasticity modulus. Average static elasticity modulus of limestone is $5.08{\times}10^5kgf/cm^2$, cement and coal mixed solid is $0.25{\times}10^5kgf/cm^2$, $0.095{\times}10^5kgf/cm^2$. Average seismic velocity of limestone is 5.240m/sec, cement and coal mixed solid is 2,211.3m/sec, 1,447.5m/sec. Average uniaxial compressive strength of limestone was $1,221.3kgf/cm^2$ and limestone specimen mixed with cement milk and solid of cement milk mixed with coal were $125.22kgf/cm^2$, $35kgf/cm^2$ each other. Average friction angle of limestone was $49.14^{\circ}$ and limestone specimen mixed with cement milk and solid of cement milk mixed with coal were $38.39^{\circ}, 25.83^{\circ}$ each other. Average cohesion of limestone was $137.7kgf/cm^2$ and limestone specimen mixed with cement milk and solid of cement milk mixed with coal were $23.5kgf/cm^2$, $15.5kgf/cm^2$ each other. Average deformation modulus of limestone was $2.84{\times}10^5kgf/cm^2$ and limestone specimen mixed with cement milk and solid of cement milk mixed with coal were $0.4{\times}10^5kgf/cm^2, 0.12{\times}10^5kgf/cm^2$ each other. It was analyzed that the elasticity and uniaxial compressive strength, seismic velocity of solid of cement milk mixed limestone pieces and coal had an highly interrelation regardless of existence of limestones pieces and coal but it had shown that limestones had an lower interrelation. In case of field seismic velocity and deformation of limestone, SIC solid of cement milk mixed with coal and limestone pieces had an highly interrelation.

  • PDF

Construction of Correlation between Basic Soil Properties and Deformation Modulus of Trackbed Soils Based on Laboratory and Field Mechanical Tests (역학적 실내외 시험에 의한 철도궤도 상부노반용 흙재료의 기본물성과 변형계수 상관성 평가)

  • Park, Jae Beom;Choi, Chan Yong;Ji, Sang Hyun;Lim, Sang Jin;Lim, Yu Jin
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.204-212
    • /
    • 2016
  • The soils used as trackbed in Korea are selected using USCS utilizing basic soil properties such as Grain Size Distribution(GSD), % passing of #200 sieve ($P_{200}$), % passing of #4 sieve ($P_4$), Coefficient of uniformity ($C_u$), and Coefficient of curvature ($C_c$). Degree of compaction of the soils adapted in the code by KR should be evaluated by maximum dry density (${\gamma}_{d-max}$) and deformation modulus $E_{v2}$. The most important influencing factor that is critical to stability and deformation of the compacted soils used as trackbed is stiffness. Thus, it is necessary to construct a correlation between the modulus and the basic soil properties of trackbed soil in order to redefine a new soil classification system adaptable only to railway construction. To construct the relationship, basic soil test data is collected as a database, including GSD, maximum dry unit weight (${\gamma}_{d-max}$), OMC, $P_{200}$, $P_4$, $C_u$, $C_c$, etc.; deformation modulus $E_{v2}$ and $E_{vd}$ are obtained independently by performing a Repeated Plated Bearing Test (RPBT) and Light Weight Deflectometer Test (LWDT) for ten different railway construction sites. A linear regression analysis is performed using SPSS to obtain the relationship between the basic soil properties and the deformation modulus $E_{v2}$ and $E_v$. Based on the constructed relationship and the various obtained mechanical test data, a new soil classification system will be proposed later as a guideline for the design and construction of trackbed foundation in Korea.

Reliability Analysis of Differential Settlement Using Stochastic FEM (추계론적 유한요소법을 이용한 지반의 부등침하 신뢰도 해석)

  • 이인모;이형주
    • Geotechnical Engineering
    • /
    • v.4 no.3
    • /
    • pp.19-26
    • /
    • 1988
  • A stochastic numerical model for predictions of differential settlement of foundation Eoils is developed in this Paper. The differential settlement is highly dependent on the spatial variability of elastic modulus of soil. The Kriging method is used to account for the spatial variability of the elastic modulus. This technique provides the best linear unbiased estimator of a parameter and its minimum variance from a limited number of measured data. The stochastic finite element method, employing the first-order second-moment analysis for computations of error Propagation, is used to obtain the means, ariances, and covariances of nodal displacements. Finally, a reliability model of differential settlement is proposed by using the results of the stochastic FEM analysis. It is found that maximum differential settlement occurs when the distance between two foundations is approximately same It with the scale of fluctuation in horizontal direction, and the probability that differential settlement exceeds the allot.able vague might be significant.

  • PDF

Sensitivity Analysis of the Factors Influencing for Decision of Reinforced Roadbed Thickness (강화노반 두께 결정을 위한 영향인자 민감도 분석)

  • Choi, Chan-Yong;Lee, Jin-Wook;Bae, Jae-Hoon;Shin, Eun-Chul
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1827-1832
    • /
    • 2007
  • The purpose of a railway track is to provide a smooth surface for safe and economical train transportation. The performance of the track results from a complex interaction of the track and subgrade components in response to train loading and environmental actions. In the past, the role of subgrade as the track foundation were not recognized adequately. There are insufficient information and inadequate methods for subgrade design, assessment and improvement. This situation has survived for a long time largely because a subgrade defect can often be adjusted by adding more ballast under the ties or applying more frequent track maintenance. Therefore, the application of reinforced roadbed technology will be expected to increase in the future. The reinforced roadbed thickness is set depending on subgrade reaction modulus$(K_{30})$ in the condition of upper subgrade through PBT in both conventional railroad and KTX railroads. As train velocity (V), train passing tonnage (N), and train axial load (P) are not considered in design, the roadbed thickness could be overestimated (or underestimated). Therefore, In this study, the computer model, GEOTRACK, was analyzed the influence of reinforced roadbed thickness factors on track modulus and the characteristics of stress pulses in track and subgrade generated by repeated axle loading.

  • PDF

Determination Method of Reinforced Roadbed Thickness based on Design Chart (설계지표를 이용한 철도강화노반 두께 산정에 관한 연구)

  • Yoo, Chung-Hyun;Choi, Chan-Yong;Kim, Dae-Sang
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.1279-1286
    • /
    • 2007
  • The purpose of a railway track is to provide a smooth surface for safe and economical train transportation. The performance of the track results from a complex interaction of the track and subgrade components in response to train loading and environmental actions. In the past, the role of subgrade as the track foundation were not recognized adequately. There are insufficient information and inadequate methods for subgrade design, assessment and improvement. This situation has survived for a long time largely because a subgrade defect can often be adjusted by adding more ballast under the ties or applying more frequent track maintenance. Therefore, the application of reinforced roadbed technology will be expected to increase in the future. The reinforced roadbed thickness is set depending on subgrade reaction modulus($K_{30}$) in the condition of upper subgrade through PBT in both conventional railroad and KTX railroads. As train velocity (V), train passing tonnage (N), and train axial load (P) are not considered in design, the roadbed thickness could be overestimated (or underestimated). Therefore, in this study has proposed a determination method of reinforced roadbed thickness using design chart made by resilience modulus and properties of earthwork materials.

  • PDF

Damage constitutive model of brittle rock considering the compaction of crack

  • Gu, Qingheng;Ning, Jianguo;Tan, Yunliang;Liu, Xuesheng;Ma, Qing;Xu, Qiang
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1081-1089
    • /
    • 2018
  • The deformation and strength of brittle rocks are significantly influenced by the crack closure behavior. The relationship between the strength and deformation of rocks under uniaxial loading is the foundation for design and assessment of such scenarios. The concept of relative crack closure strain was proposed to describe the influence of the crack closure behavior on the deformation and strength of rocks. Considering the crack compaction effect, a new damage constitutive model was developed based on accumulated AE counts. First, a damage variable based on the accumulated AE counts was introduced, and the damage evolution equations for the four types of brittle rocks were then derived. Second, a compaction coefficient was proposed to describe the compaction degree and a correction factor was proposed to correct the error in the effective elastic modulus instead of the elastic modulus of the rock without new damage. Finally, the compaction coefficient and correction factor were used to modify the damage constitutive model obtained using the Lemaitre strain equivalence hypothesis. The fitted results of the models were then compared with the experimental data. The results showed that the uniaxial compressive strength and effective elastic modulus decrease with an increase in the relative crack closure strain. The values of the damage variables increase exponentially with strains. The modified damage constitutive equation can be used to more accurately describe the compressive deformation (particularly the compaction stage) of the four types of brittle rocks, with a coefficient of determination greater than 0.9.

Analysis Method Considering the Ground Reinforcement Effect of Micropile by Field Loading Tests (재하시험을 통한 소구경말뚝의 지반보강효과를 고려한 해석법)

  • Hong, Seok-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.89-99
    • /
    • 2009
  • Compared to standard piling methods, micropile construction can be used in downtown areas since it generates less vibration and noise. Since it only causes less soil disturbance, it is commonly used as reinforcement to existing structures. In this study, a field wherein the bearing capacity and settlement of soil can not support the weight of the superstructure was selected and micropiles were implemented instead of ordinary piles. The deformation modulus of the micropile reinforced ground was determined and was directly reflected in the design. Loading testing was used to check whether or not the allowable bearing capacity satisfies the condition of the designed bearing capacity. The computed deformation modulus based from the test was used in the numerical analysis of soil to investigate the stability of the foundation and analysis method. And a method for controlling the bearing capacity and settlement was recommended.

J2-bounding Surface Plasticity Model with Zero Elastic Region (탄성영역이 없는 J2-경계면 소성모델)

  • Shin, Hosung;Oh, Seboong;Kim, Jae-min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.469-476
    • /
    • 2023
  • Soil plasticity models for cyclic and dynamic loads are essential in non-linear numerical analysis of geotechnical structures. While a single yield surface model shows a linear behavior for cyclic loads, J2-bounding surface plasticity model with zero elastic region can effectively simulate a nonlinearity of the ground response with the same material properties. The radius of the yield surface inside the boundary surface converged to 0 to make the elastic region disappear, and plastic hardening modulus and dilatancy define plastic strain increment. This paper presents the stress-strain incremental equation of the developed model, and derives plastic hardening modulus for the hyperbolic model. The comparative analyses of the triaxial compression test and the shallow foundation under the cyclic load can show stable numerical convergence, consistency with the theoretical solution, and hysteresis behavior. In addition, plastic hardening modulus for the modified hyperbolic function is presented, and a methodology to estimate model variables conforming 1D equivalent linear model is proposed for numerical modeling of the multi-dimensional behavior of the ground.