• Title/Summary/Keyword: foundation mass concrete

Search Result 77, Processing Time 0.025 seconds

Modelling of the effects of alkali-aggregate reaction in reinforced concrete structures

  • Pietruszczak, S.;Ushaksaraei, R.;Gocevski, V.
    • Computers and Concrete
    • /
    • v.12 no.5
    • /
    • pp.627-650
    • /
    • 2013
  • This paper deals with application of a non-linear continuum model for reinforced concrete affected by alkali-aggregate reaction (AAR) to analysis of some nuclear structures. The macroscopic behaviour of the material affected by AAR is described by incorporating a homogenization/averaging procedure. The formulation addresses the main stages of the deformation process, i.e., a homogeneous deformation mode as well as that involving localized deformation, associated with formation of macrocracks. The formulation is applied to examine the mechanical behaviour of some reinforced concrete structures in nuclear power facilities located in Quebec (Canada). First, a containment structure is analyzed subjected to 45 years of continuing AAR. Later, an inelastic analysis is carried out for the spent fuel pool taking into account the interaction with the adjacent jointed rock mass foundation. In the latter case, the structure is said to be subjected to continuing AAR that is followed by a seismic event.

A Study on the Durability of Concrete for High-rise Concrete Mat Foundation (초고층 콘크리트 매트 기초용 콘크리트 내구성에 관한 연구)

  • Park, Dong-Choen;Kim, Young-Bong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.115-116
    • /
    • 2022
  • Large concrete mass members are commonly used as matte bases for skyscrapers. In general, Integral casting is preferred to secure construction convenience and durability quality rather than separate casting. However, there is a possibility that cracks may occur in the early stages due to the generation of a lot of hydration heat, and thus durability will decrease, so it is necessary to determine an appropriate mixture and verify it through experiments. The purpose of the study was to conduct a review on the durability of the optimal high-performance low-heating concrete combination derived through the experiment and to conduct a review analysis on the performance satisfaction and performance expression mechanism.

  • PDF

Pilot Test of Improving Super Retarding Concrete to Control of Hydration Heat Crack of Foundation Mat Mass Concrete (기초매트 매스 콘크리트의 수화열 균열제어로서 초지연 콘크리트 활용에 관한 예비실험)

  • Noh, Sang-Kyun;Baek, Dae-Hyun;Lee, Jae-Sam;Kim, Hyun-Seob;Lee, Byeong-Hoon;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.37-41
    • /
    • 2008
  • According to the recent rapidly increasing that construction works are gradually Manhattanized mainly the grand scaled residential buildings, the foundation of the building that is related to safety is increasing for building as a grand scaled mat concrete. Because mat concrete can not be simultaneously placing of concrete in a great quantity due to the circumstance at the field, the inequal deformation of the tensile stress that according to the time lag of hydration heat between the upper layer and the lower layer is affecting as a cause that is the possibility of crack occurrence by increasing. Accordingly, this research checked the efficiency of super retard concrete in applying real structures, and we implemented the preparatory experiment to settle up the inequal deformation of the tensile stress substantially that is according to the time lag of placement between the upper layer and the lower layer by controlling the setting time using the super retarding agent. As the result of test, the more target of delay time lengthened, the more fluidity increased and air content indicated a little differences. There was from 2 to 10 hours between the standard curing and the outside curing at the setting time and in case of calculating the rate of mixing at real structure is required that mix promotion, increasing the amount of mixing, by setting up the curing temperature. The super retard concrete showed the result that in compressive strength, early-age strength was smaller than normal concrete whereas it was same or more figures from at the aging 28days because of the super retarding agent.

  • PDF

A comparative study on damping of finite dry and saturated sand stratum under vertical vibrations

  • Prathap Kumar, M.T.;Ramesh, H.N.;Raghavebdra Rao, M.V.;Asha, M.
    • Geomechanics and Engineering
    • /
    • v.2 no.1
    • /
    • pp.29-44
    • /
    • 2010
  • Vertical vibration tests were conducted using model footings of different size and mass resting on the surface of finite sand layer with different height to width ratios which was underlain by either rigid concrete base, under both dry and saturated condition. The effect of saturation on the damping ratio of finite sand stratum underlain by a rigid base has been verified and compared with the results obtained for the case of finite dry sand stratum underlain by the rigid base. Comparison of results of the experimental study showed that the damping in both the cases is less than 10%. The damping ratio obtained for finite saturated sand stratum is marginally lower than that obtained on finite dry sand stratum at H/B ratio of 0.5. The difference between the two cases becomes significant when the H/B ratio increases to 3.0, indicating the significant influence of soil moisture on damping ratio of foundation- soil system with increase in the thickness of the finite sand stratum. Comparison of the predicted damping ratio for a homogeneous sand stratum with the experimental damping ratio obtained corresponding to the height to width ratio of 3.0 of the finite sand stratum underlain by the rigid concrete base indicates a significant reduction in damping ratio of the foundation-soil system for both the cases.

Structural Vibration Analysis of a Large Two-Stroke Engine and Foundation System for Stationary Power Plants (발전용 대형 2 행정 디젤 엔진 및 기초의 구조 진동해석)

  • 박종포;신언탁
    • Journal of KSNVE
    • /
    • v.10 no.3
    • /
    • pp.493-499
    • /
    • 2000
  • Structural vibration analysis of the stationary power plant system employing a large two-stroke low speed diesel engine is performed to verify that the vibration characteristics of the system meet design requirements, The system consists of the diesel engine generator and concrete foundation including pile and soil. The system is modeled in the form of a mass-elastic system of 5 degrees of freedom for vibration analysis. Excitation moments and dynamic parameters including engine body stiffness soil stiffness and damping are identified for the analysis, Results of structural vibration analysis of the system are presented and compared with measurements in this paper.

  • PDF

Ground Vibration in Tunnelling by Blasting and its Effect on Surface Structures (터널굴착이 지상구조물에 미치는 영향평가 및 발파지침설계)

  • 신희순;한공창;류창하;신중호;박연준;최영학
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.463-470
    • /
    • 2000
  • In tunnel excavation by blast beneath the surface structures in urban area, the characteristics of ground vibration induced by blast and its influence on surface structures are analyzed by the field test and the numerical analysis on dynamic behaviors of the structure. According to the field test on the propagating characteristics of blast vibration through the rock mass and the concrete foundation pile. the attenuation index of peak particle velocity with distance shows the range of 1.7∼2.0 for the rock mass and the range of 2.0∼2.3 for the concrete pile. This shows that the blast vibration reduces more rapidly in the concrete pile. It is known from the numerical analysis on dynamic behavior of the structure that the coefficient of response, velocity ratio of structure response to input wave, is different according to the story of the structure. It can be said from this research that the characteristics of the ground vibration and the dynamic behavior of the structure should be well evaluated and be considered as important factors for safe blasting design especially in underground excavation at shallow depth in urban area.

  • PDF

Mock-up Test of Improving Super Retarding Concrete to Control of Hydration Heat Crack of Foundation Mat Mass Concrete (기초매트 매스콘크리트의 수화열 균열제어로서 초지연콘크리트 활용에 관한 Mock-up 실험)

  • Lee, Jae-Sam;Bae, Yeoun-Ki;Noh, Sang-Kyun;Kim, Suk-Il;Chung, Sung-Jin;Han, Cheon-Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.777-780
    • /
    • 2008
  • According to the recent tendency that the buildings in the downtown are gradually Manhattanized, the very thick massive concrete is selected as the foundation of architectures. By the way, because this mass concrete cannot be simultaneously pour in a great quantity due to the circumstance at the field, not only the questions on the unification between the concretes pour on the upper layer and the lower layer are presented but also the cracks by the internal force from the difference of hydration exothermic period are occurred, which are pointed out as the problems. Thus, this study performed Mock-up test to apply the hydration heat controlling method of massive concrete for horizontal partition pouring construction to the building sites for the purpose of securing the stability on the cracks by the internal force from the difference of hydration exothermic period on the upper layer and the lower layer of massive concrete and checked the efficiency. As the results of test, in case of setting time difference method by super retarder with 2 layers and 4 layers, the effect that temperature gaps between upper part and lower part were lowered and the possibility of crack occurrence was decreased as the peak time of the heat of hydration became delayed to the latter term could be confirmed.

  • PDF

A Study on Effect of Specimen Thickness and Curing Temperature on Properties of Low Heat Concrete by Analysis Program for Heat of Hydration (수화열 해석 프로그램에 의한 저발열 콘크리트의 특성에 미치는 부재두께 및 양생온도의 영향에 관한 연구)

  • Lee, Seung-Min;Rho, Hyoung-Nam;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.31-36
    • /
    • 2008
  • This study aims to examine the effects of thickness of the concrete members and curing temperature on the properties of low heat concrete through heat of hydration analysis. Type of the members that was analyzed in the experiment is ternary mixture of ordinary portland cement, blast-furnace slag incorporating ratio(20%) and fly ash incorporating ratio(30%), which formed a mat foundation. Thicknesses of the concrete members were 1, 2 and 3(m) and three levels of curing temperatures were 10, 20 and 30(℃). They were applied to analyze the effects on the temperature and thermal cracking index. As a result, for temperature history, temperature difference between the central area and the surface tended to decrease as the thickness of the concrete members get thinner. For the temperature cracking index, on the other hand, the risk of cracking tended to decrease as the curing temperature gets higher and as the thickness gets thinner.

  • PDF

Performance-based Design of 300 m Vertical City "ABENO HARUKAS"

  • Hirakawa, Kiyoaki;Saburi, Kazuhiro;Kushima, Souichirou;Kojima, Kazutaka
    • International Journal of High-Rise Buildings
    • /
    • v.3 no.1
    • /
    • pp.35-48
    • /
    • 2014
  • In designing a 300 meter high skyscraper expected to be the tallest building in Japan, an earthquake-ridden country, we launched on the full-scale performance based design to ensure redundancy and establish new specifications using below new techniques. The following new techniques are applied because the existing techniques/materials are not enough to meet the established design criteria for the large-scale, irregularly-shaped building, and earth-conscious material saving and construction streamlining for reconstructing a station building are also required: ${\bullet}$ High strength materials: Concrete filled steel tube ("CFT") columns made of high-strength concrete and steels; ${\bullet}$ New joint system: Combination of outer diaphragm and aluminium spray jointing; ${\bullet}$ Various dampers including corrugated steel-plate walls, rotational friction dampers, oil dampers, and inverted-pendulum adaptive tuned mass damper (ATMD): Installed as appropriate; and ${\bullet}$ Foundation system: Piled raft foundation, soil cement earth-retaining wall construction, and beer bottle shaped high-strength CFT piles.

Evaluating stability of dam foundations by borehole and surface survey using Step Frequency Radar

  • Jha Prakash C.;Balasubramaniam V. R.;Nelliat Sandeep;Sivaram Y. V.;Gupta R. N.
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.328-334
    • /
    • 2003
  • Evaluating stability of dam foundations is one of the prime areas of any rock engineering investigations. Despite best engineering efforts in the design and construction of dam foundations, the foundation regime of a constructed dam suffers deterioration due to continuous erosion from backwater current of dam discharge and dynamic effects of loading and unloading process. Even during construction, development of frequent cracks due to sudden thermal cooling of concrete blocks is not uncommon. This paper presents two case studies from India and Bhutan. In the first case, the back current of water discharge from the Srisailam dam in India had continuously eroded the apron and has eaten into the dam foundation. In the second case with dam construction at Tala Hydroelectric Project in Bhutan, sudden overflow of river during the construction stage of dam had led to development of three major cracks across the dam blocks. This was ascribed to adiabatic cooling effect of concrete blocks overlain by chilled water flow. Non-destructive evaluation of rock mass condition in the defect regime by the borehole GPR survey helped in arriving at the crux so as to formulate appropriate restoration plan.

  • PDF