• Title/Summary/Keyword: foundation failure

Search Result 338, Processing Time 0.024 seconds

Reliability-Based Design of Shallow Foundations Considering The Probability Distribution Types of Random Variables (확률변수의 분포특성을 고려한 얕은기초 신뢰성 설계)

  • Kim, Chang-Dong;Kim, Soo-Il;Lee, Jun-Hwan;Kim, Byung-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.1
    • /
    • pp.119-130
    • /
    • 2008
  • Uncertainties in physical and engineering parameters for the design of shallow foundations arise from various aspects such as inherent variability and measurement error. This paper aims at investigating and reducing uncertainty from deterministic method by using the reliability-based design of shallow foundations accounting for the variation of various design parameters. A probability distribution type and statistics of random variables such as unit weight, cohesion, infernal friction angle and Young's modulus in geotechnical engineering are suggested to calculate the ultimate bearing capacities and immediate settlements of foundations. Reliability index and probability of failure are estimated based on the distribution types of random variables. Widths of foundation are calculated at target reliability index and probability of failure. It is found that application and analysis of the best-fit distribution type for each random variables are more effective than adoption of the normal distribution type in optimizing the reliability-based design of shallow foundations.

Case Study on Reliability Analysis of Offshore Wind Turbine Foundation (해상풍력기초 신뢰성해석 사례분석 연구)

  • Yoon, Gillim;Kim, Hongyeon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.12
    • /
    • pp.91-98
    • /
    • 2012
  • In this paper, the behavior of offshore wind turbine(OWT) foundation which is modeled by using existing design method and FEM is compared. When the same type of foundation is designed under the same sea and ground condition, the behavior characteristics with each model are compared. As a result, the member forces between apparent fixity and distributed spring type foundation which consider the ground stiffness are not different markedly, while fixed-base type foundation shows relatively lower member forces, which results in smaller safety margin. In other words, considering ground stiffness is reasonable because soil-pile interaction affects significantly on the analysis result. A case study with a monopile shows significant errors between p-y and FEM model at the head and tip of the pile. Also, it shows that the errors at the tip with diameter increase of the pile is larger. Thus, considering ground characteristics and engineering judgment are necessary in practice. A comparison of reliability analysis between tripod and monopile type foundation on the same condition shows larger probability of failure in monopile type and it indicates that the safety margin of monopile type can be lower.

Stress-Dependent Failure Criteria for Marine Silty Sand Subject to Cyclic Loading (반복하중을 받는 해양 실트질 모래의 응력기반 파괴기준)

  • Ryu, Tae Gyung;Kim, Jin Man
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.11
    • /
    • pp.15-23
    • /
    • 2015
  • An experimental study has been conducted to evaluate the effects of average and cyclic shear stresses on the undrained failure behaviors of dense marine silty sand by using the Cyclic Direct Simple Shear apparatus. The results show that when the average shear stress ratio is zero, symmetric cyclic shear deformation is the major component of deformation, and permanent shear deformation is relatively small. On the other hand, when the average shear stress ratio is larger than zero, asymmetric permanent shear deformation is the major component, and cyclic shear deformation does not change much as the number of cyclic loads increases. The average shear stress ratio has less effects on the number of cyclic loads needed to fail, as compared with the cyclic shear stress ratio. The proposed stress-dependent failure contour can effectively be used to assess the cyclic shear strength of soil beneath the foundation for the design of offshore structures.

An Experimental Study on the Bearing Capacity and Failure Behavior of Composite Ground Reinforced by RAP Method (RAP 복합지반의 지지력 및 파괴거동에 관한 실험적 연구)

  • 천병식
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.5
    • /
    • pp.127-134
    • /
    • 2004
  • Rammed Aggregate Pier (RAP) has extensive applicability as for a foundation of structures. In this study, bearing capacity of the reinforced ground by RAP and the failure behavior of RAP are investigated through experiments. RAPs with diameters of 45, 60, 70 mm were installed in sand, of which relative densities are 60, 70, 90%. Then, two columns of pressure gauges, near the RAPs and one diameter off from the center of piers, are installed 5, 10, 15, 20, 25, 30 cm from the surface of the ground. The test results show that maximum lateral earth pressure is observed near 5∼10 cm (1.0∼2.0D) from the surface, which indicates the occurrence of bulging failure type. In addition, deformation of RAP in radial direction increases with lower relative density of the ground. Furthermore, lateral stress distribution decreases with depth.

A study for NHPP Software Reliability Model of the Weibull Extension Model Based on Generalized Order Statistics (일반화 통계량에 의존한 와이블 확장모형을 이용한 NHPP 소프트웨어 신뢰성 모형에 관한 연구)

  • Yang, Tae-Jin
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.5
    • /
    • pp.339-344
    • /
    • 2015
  • NHPP software reliability models for failure analysis can have, in the literature, exhibit either constant, monotonic increasing or monotonic decreasing failure occurrence rates per fault. In this paper, infinite failures NHPP models that repairing software failure point in time reflects the situation, was presented for comparing property. Commonly used in the field of software reliability based on Weibull extension distribution software reliability of infinite failures was presented for comparison problem. The result is that a relatively large shape parameter was effectively. The parameters estimation using maximum likelihood estimation was conducted and Model selection was performed using the mean square error and the coefficient of determination. In this research, software developers to identify software failure property follows shape parameter, some extent be able to help is considered.

Experimental study on the mechanical response and failure behavior of double-arch tunnels with cavities behind the liner

  • Zhang, Xu;Zhang, Chengping;Min, Bo;Xu, Youjun
    • Geomechanics and Engineering
    • /
    • v.20 no.5
    • /
    • pp.399-410
    • /
    • 2020
  • Cavities often develop behind the vault during the construction of double-arch tunnels, generally in the form of various defects. The study evaluates the impact of cavities behind the vault on the mechanical and failure behaviors of double-arch tunnels. Cavities of the same sizes are introduced at the vault and the shoulder close to the central wall of double-arch tunnels. Physical model tests are performed to investigate the liner stress variation, the earth pressure distribution and the process of progressive failure. Results reveal that the presence of cavities behind the liner causes the re-distribution of the earth pressure and induces stress concentration near the boundaries of cavities, which results in the bending moments in the liner inside the cavity to reverse sign from compression to tension. The liner near the invert becomes the weak region and stress concentration points are created in the outer fiber of the liner at the bottom of the sidewall and central wall. It is suggested that grouting into the foundation soils and backfilling injection should be carried out to ensure the tunnel safety. Changes in the location of cavities significantly impact the failure pattern of the liner close to the vault, e.g., cracks appear in the outer fiber of the liner inside the cavity when a cavity is located at the shoulder close to the central wall, which is different from the case that the cavity locates at the vault, whereas changes in the location of cavities have a little influence on the liner at the bottom of the double-arch tunnels.

A Deformation Prediction of the Embankment on the Soft Clayey Foundation - A Case Study of the Sea Dike of Koheung Bay - (점성토지반에 축조한 제방의 변형추정 -고흥만 방수제 사례연구를 중심으로-)

  • 오재화;이문수
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.4
    • /
    • pp.94-102
    • /
    • 1998
  • This paper aims at developing the prediction technique of the deformation for the embankment such as sea dike and shore protection relevant to reclamation project along the southern coast of the Korean Peninsula. Generally total deformation of a sea dike over clayey foundation are composed of immediate settlement, plastic deformation and consolidation settlement. Plastic deformation occurs when the ultimate bearing capacity is less than overburden pressure containing the stress increment due to the construction of an embankment. The reliable prediction of total settlement is very important since deformed final geometry of sea dike is directly connected for analysing the safety of the long-term slope failure and piping. During this study, plastic deformation, major part of deformation was analysed using the program developed by authors, whereas immediate settlement and consolidation settlement were predicted by Mochinaka and Sena's method and Terzaghi's 1-dimensional theory of consolidation respectively. In order to validate the prediction technique for the deformation, a case study of Koheung Bay reclamation works was carried out. A good agreement was obtained between observation and prediction, which means the applicability of the technique.

  • PDF

Problem of Evaluation Methods on the Wall Facing-Geosynthetics Connection Strength and Its Improvement (전면 벽체-보강재 연결강도 평가방법의 문제점 및 개선 방향)

  • Hong, Ki-Kwon;Shin, Ju-Oek;Han, Jung-Geun;Cho, Sam-Deok;Lee, Kwang-Wu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.184-195
    • /
    • 2008
  • The use of geosynthetics for the reinforced earth wall system has been increasing rapidly for a number of years. The connection strength between wall facing and geosynthetics should be evaluated in the design of geosynthetics. However, the connection strength is not often evaluate, exactly, and it causes problems such as deformation of the wall facing, local failure of the reinforced earth wall system, conservative design and so on. Therefore, the connection strength in the design of geosynthetics should be applied evaluation result by reasonable method. This study is evaluated connection strength using the typical design method, NCMA(1997) and FHWA(1996), in the field case. Then the results compared with the evaluation results of connection strength, which is suggested by Soong & Koener(1997). The analysis results confirmed that the connection strength for the design of geosynthetics should be evaluate using reasonable method with considering various factor, such as safety factor, installation and importance of construction.

  • PDF

Incorporating uplift in the analysis of shallowly embedded pipelines

  • Tian, Yinghui;Cassidy, Mark J.
    • Structural Engineering and Mechanics
    • /
    • v.40 no.1
    • /
    • pp.29-48
    • /
    • 2011
  • Under large storm loads sections of a long pipeline on the seabed can be uplifted. Numerically this loss of contact is extremely difficult to simulate, but accounting for uplift and any subsequent recontact behaviour is a critical component in pipeline on-bottom stability analysis. A simple method numerically accounting for this uplift and reattachment, while utilising efficient force-resultant models, is provided in this paper. While force-resultant models use a plasticity framework to directly relate the resultant forces on a segment of pipe to the corresponding displacement, their historical development has concentrated on precisely modelling increasing capacity with penetration. In this paper, the emphasis is placed on the description of loss of penetration during uplifting, modelled by 'strain-softening' of the force-resultant yield surface. The proposed method employs uplift and reattachment criteria to determine the pipe uplift and recontact. The pipe node is allowed to become free, and therefore, the resistance to the applied hydrodynamic loads to be redistributed along the pipeline. Without these criteria, a localised failure will be produced and the numerical program will terminate due to singular stiffness matrix. The proposed approach is verified with geotechnical centrifuge results. To further demonstrate the practicability of the proposed method, a computational example of a 1245 m long pipeline subjected to a large storm in conditions typical of offshore North-West Australia is discussed.

Seismic behavior of RC framed shear wall buildings as per IS 1893 and IBC provisions

  • Jayalekshmi, B.R.;Chinmayi, H.K.
    • Geomechanics and Engineering
    • /
    • v.9 no.1
    • /
    • pp.39-55
    • /
    • 2015
  • Usually the analyses of structures are carried out by assuming the base of structures to be fixed. However, the soil beneath foundation alters the earthquake loading and varies the response of structure. Hence, it is not realistic to analyze structures by considering it to be fixed. The importance of soil-structure interaction was realized from the past failures of massive structures by neglecting the effect of soil in seismic analysis. The analysis of massive structures requires soil flexibility to be considered to avoid failure and ensure safety. Present study, considers the seismic behavior of multi-storey reinforced concrete narrow and wide buildings of various heights with and without shear wall supported on raft foundation incorporating the effect of soil flexibility. Analysis of the three dimensional models of six different shear wall positions founded on four different soils has been carried out using finite element software LS DYNA. The study investigates the differences in spectral acceleration coefficient (Sa/g), base shear and storey shear obtained following the seismic provisions of Indian standard code IS: 1893 (2002) (IS) and International building code IBC: 2012 (IBC). The base shear values obtained as per IBC provisions are higher than IS values.