DOI QR코드

DOI QR Code

Reliability-Based Design of Shallow Foundations Considering The Probability Distribution Types of Random Variables

확률변수의 분포특성을 고려한 얕은기초 신뢰성 설계

  • 김창동 ((주)이제이텍 토목설계부) ;
  • 김수일 (연세대학교 토목공학과) ;
  • 이준환 (연세대학교 토목공학과) ;
  • 김병일 ((주)이제이텍 기술연구소)
  • Published : 2008.01.31

Abstract

Uncertainties in physical and engineering parameters for the design of shallow foundations arise from various aspects such as inherent variability and measurement error. This paper aims at investigating and reducing uncertainty from deterministic method by using the reliability-based design of shallow foundations accounting for the variation of various design parameters. A probability distribution type and statistics of random variables such as unit weight, cohesion, infernal friction angle and Young's modulus in geotechnical engineering are suggested to calculate the ultimate bearing capacities and immediate settlements of foundations. Reliability index and probability of failure are estimated based on the distribution types of random variables. Widths of foundation are calculated at target reliability index and probability of failure. It is found that application and analysis of the best-fit distribution type for each random variables are more effective than adoption of the normal distribution type in optimizing the reliability-based design of shallow foundations.

얕은기초 설계시 이용되는 지반의 물리적 공학적 설계변수들은 고유변동성(inherent variability) 및 측정 오차(measurement error) 등과 같은 여러 가지 요인으로 인하여 불확실성이 필연적으로 내포되어 있다. 본 논문에서는 얕은기초 설계시 기존의 결정론적 방법에서 고려하지 못하는 지반 불확실성 등을 포함한 설계 파라미터의 분산을 고려할 수 있는 확률론적 방법의 신뢰성 설계 사례를 제시하였다. 극한지지력 산정시 확률변수(random variable)인 단위중량, 점착력 및 내부마찰각 그리고 침하량 산정시 탄성계수에 대하여 국내 지반에 대한 적정 확률분포 형태 및 통계적 특성치를 결정하였다. 각 확률변수별로 채택된 분포를 적용하여 지지력과 침하량에 관한 신뢰지수와 파괴확률을 결정하였으며, 목표 신뢰지수 또는 확률에 대한 기초폭을 결정하였다. 얕은기초의 신뢰성 설계에 있어서 정규분포의 일괄적 적용보다는 각 확률변수에 해당하는 적합한 분포형태를 적용, 분석하는 것이 바람직한 것으로 나타났다.

Keywords

References

  1. 김병일, 김연수, 김창동, 사상호 (2007). 설계 파라미터의 불확실성을 고려한 얕은기초 신뢰성 설계, 한국지반공학회 기초기술위원회 학술발표회 논문집, pp.1-10
  2. 한국지반공학회 (2003). 구조물 기초설계기준 해설, 한국지반공학회, pp.177-276
  3. 허정언, 정상섬, 곽기석 (2005), 축하중을 받는 말뚝구조물의 MCS에 기초한 신뢰성해석, 한국지반공학회 논문집, 제25권 3C호, pp.181-188
  4. AASHTO (2007). AASHTO LRFD Bridge Design Specifications, SI Units, 4th Edition, American Association of State Highway and Transportation Officials, Washington, D. C.
  5. Baecher, G. B., and Christian, J. T. (2003). Reliability and Statistics in Geotechnical Engineering, John wiley, Chichester, U.K.
  6. CEN (European Committee for Standardisation (2004). Eurocode 7: Geotechnical design-Part 1: General rules, BS EN 1997-1, London
  7. Christian, J. T., Ladd, C. C. and Baecher, G. B. (1994). Reliability applied to slope stability analysis, Journal of Geotechnical Engineering, ASCE, Vol.120, No.12. pp.2189-2207
  8. Hansen, J. B. (1970). A revised and extend formula for bearing capacity. Danish Geotech. Inst., Bulletin 28, Copenhagen
  9. Harr, M. E. (1966). Foundation of Theoretical Soil Mechanics, McGraw-Hill Book Company, New York
  10. Harr, M. E. (1987). Reliability-Based Design in Civil Engineering, McGraw-Hill Book Company, New York
  11. Hasofer, A. M. and Lind, N. (1974). An exact and invariant first-order reliability format. Journal of Engineering Mechanics, ASCE, Vol. 100, EM 1, pp.111-121
  12. Hooper, J.A., and Butler, F.G. (1966), Some Numerical Results Concerning the Shear Strength of London Clay, Geotechnique, Vol.16, pp.282-304 https://doi.org/10.1680/geot.1966.16.4.282
  13. Kulhawy, F. H., Birgisson, B. and Grigoriu, M. D. (1992). Reliability-based foundation design for transmission line structures: Transformation models for in-situ tests. Rpt EL-5507(4). Electric Power Research Institute, Palo Alto
  14. Lacasse, S. and Nadim, F., (1996), Uncertainties in characterising soil properties, Uncertainty in the geologic environment: From theory to practice, ASCE GSP No.58, pp.49-75
  15. Low, B. K., and Tang, W. H. (1997a). Efficient Reliability Evaluation using Spreadsheet, Journal of Engineering Mechanics, Vol.123, No.7, pp.749-752 https://doi.org/10.1061/(ASCE)0733-9399(1997)123:7(749)
  16. Low, B. K., and Tang, W. H (1997b). Reliability Analysis of Reinforced Embankments on Soft Ground. Canadian Geotechnical Journal, 345, pp.672-685
  17. Lumb, P. (1966). The variability of natural soils, Canadian Geotechnical Journal, Vol.3, pp.74-97 https://doi.org/10.1139/t66-009
  18. Mcguffery, Iori, V.J., Kyfor, Z., and Grivas, D.A. (1981), Statistical Geotechnical Prop erties of Lockp ort Clays, Transportation Research Board, No.809. pp.54-59
  19. Meyerhof, G. G. (1970), Safety Factors in Soil Mechanics, Canadian Geotechnical Journal, Vol.5, No.2, pp.140-148
  20. Palisade corporation (2002). Guide to using @Risk, http://www.palisade.com
  21. Rackwitz, R. and Fiessler, B. (1978). Structural reliability under combined load sequences, Computers and Structures, Vol.9, pp.489-494 https://doi.org/10.1016/0045-7949(78)90046-9
  22. Schultze, E. (1971), Frequency Distributions and Correlations of Soil Properties, Proceedings of the First International Conference on Application of Statistics and Probability to Soil and Structural Engineering, pp.371-387
  23. Turnbull, W.J., Compton J.R., and Ahvin R.G. (1966), Quality Control of Comp acted Earthwork, Journal of Soil Mechanics and Foundation Division, ASCE, Vol.92, No.SM5, pp.142-145