• Title/Summary/Keyword: fossil fuels

Search Result 644, Processing Time 0.028 seconds

Global Trends of Unconventional CBM Gas Science Information (비전통 석탄층 메탄가스 학술정보 분석)

  • Cho, Jin-Dong;Kim, Jong-Hyun
    • Economic and Environmental Geology
    • /
    • v.46 no.4
    • /
    • pp.351-358
    • /
    • 2013
  • Methane burns more clearly than any other fossil fuels. Coalbed methane(CBM) is natural gas contained in coal beds. This gas is usually producted from coal that is either too deep or too poor-quality to be mined commercially. While global coalbed methane resource estimates are rough, they indicate between 84 and 377tcm, which compares with proven natural gas reserves of 180tcm. Coalbed methane resources are currently only produced on a major scale in the United States, Canada, Australia and China. In this study, we analysed total 109 published papers for the CBM during the 1990~2012 periods by the programs of 'web of science'. The results of analysis, the CBM study led by the United States, the follow India and Australia. In subject area(web of sciences), Energy Fuels is 57, Engineering 58 and Geology 41 papers, respectively.

Policies to Promote Green Economy Innovation in East Asia and North America

  • Barbier, Edward B.
    • STI Policy Review
    • /
    • v.6 no.1
    • /
    • pp.54-69
    • /
    • 2015
  • Although there is progress in developing green sectors in North America and East Asia, the key challenge facing the expansion of economy-wide green innovation and structural change in these regions is the absence of relevant policy follow-up to the green stimulus enacted during the Great Recession. The boost to green sectors provided by such measures is waning quickly, given that much of the green stimulus focused on energy efficiency. The biggest obstacles to sustaining green growth in North America and East Asiaare major market disincentives, especially the under-pricing of fossil fuels and market failures that inhibit green innovation. A three-part strategy to overcome these obstacles would involve: first, removing fossil fuel subsidies; second, employing market-based instruments to further reduce the social costs of fossil fuel use; and third, allocating any resulting revenue to public support for green innovation and investments. Such a strategy would ensure that green growth is not about promoting niche green sectors but instigating economy-wide innovation and structural transformation in North America and East Asia.

Energy,Environment and Education for Nuclear Energy Applications (에너지와 환경 및 원자력교육)

  • 이병휘
    • Hwankyungkyoyuk
    • /
    • v.10 no.2
    • /
    • pp.325-338
    • /
    • 1997
  • Review of the global change in various energy usages and resulting environmental impacts were made in terms of population increase, economic development and energy consumption. Greater use of fossil fuels in past couple of centuries give rise to acid rain and gradual climate changes mainly due to Green House inducing gases emissions from fossil fuel combustion. In view of the forthcoming Kyoto conference in December, various alternative options were assessed. To cope with rapidly developing robust Korean economy, the alternative energy options for the sustainable development in 21st Century would be the wider use of Nuclear Energy in parallel with constrained use of fossil fuel and renewable energy development. However there are many hurdles to overcome. One of the most important element is to improve public acceptability of those alternatives. Since public acceptance depend heavily upon individual perception on specific energy technology applications, the basic energy technologies education from primary up to high school education and the related curriculum organization is important. The suggested improvement in education for Nuclear Energy Application was made on the basis of advanced industrial countries with substantial Nuclear Energy Application programs.

  • PDF

Urgency of LiFePO4 as cathode material for Li-ion batteries

  • Guo, Kelvii Wei
    • Advances in materials Research
    • /
    • v.4 no.2
    • /
    • pp.63-76
    • /
    • 2015
  • The energy crisis involving depletion of fossil fuel resource is not the sole driving force for developing renewable energy technologies. Another driving force is the ever increasing concerns on the air quality of our planet, associated with the continuous and dramatic increase of the concentration of greenhouse gas (mainly carbon dioxide) emissions. The internal combustion engine is a major source of distributed $CO_2$ emissions caused by combustion of gasoline derived largely from fossil fuel. Another major source of $CO_2$ is the combustion of fossil fuels to produce electricity. New technologies for generating electricity from sources that do not emit $CO_2$, such as water, solar, wind, and nuclear, together with the advent of plug-in hybrid electric vehicles (PHEV) and even all-electric vehicles (EVs), offer the potential of alleviating our present problem. Therefore, the relevant technologies in $LiFePO_4$ as cathode material for Li-ion batteries suitable to the friendly environment are reviewed aim to provide the vital information about the growing field for energies to minimize the potential environmental risks.

폐기물매립지 침출수 누출방지를 위한 벤토나이트 복합라이너

  • ;A. van Zomeren
    • Geotechnical Engineering
    • /
    • v.20 no.6
    • /
    • pp.14-21
    • /
    • 2004
  • 우리나라에서는 발생 폐기물의 대부분을 매립방법으로 처리하고 있으나 차수층 및 침출수 처리장 등이 설치되지 않은 불량 매립지 형태가 대부분으로서 지하수 오염 및 지반환경오염 등의 심각한 문제점을 내포하고 있었다.(중략)

  • PDF

A Study on the Characteristics of Spark Ignition Engine Cleanliness by Low Level Bio-Alcohol Blending (저농도 바이오알코올 혼합에 따른 스파크 점화 엔진 청정 특성 연구)

  • CHA, GYUSOB;NO, SOOYOUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.5
    • /
    • pp.428-435
    • /
    • 2019
  • A comparative evaluation of engine cleanliness was performed on the transport gasoline blended with bio- alcohols, and this study was considered to achieve the aim of greenhouse gas reduction in Korea. In particular, the fuel blended with bio-ethanol and bio-butanol showed the best engine cleaning performance both on combustion chamber deposits and intake valve deposits. The deposit control gasoline additive was effective to remove intake valve deposits. In contrast, the amount of combustion chamber deposits were tend to increase even though fuels blended with bio-alcohols were used. In overall, fuels blended with bio-alcohols, compared to fossil fuels, still showed outstanding performance in terms of engine cleanliness.

Spatial Patterns of Anthropogenic Carbon Emission and Terrestrial Net Productivity

  • Ohta, Shunji;Kimura, Ai
    • Journal of Environmental Science International
    • /
    • v.15 no.12
    • /
    • pp.1087-1091
    • /
    • 2006
  • This paper describes the current spatial patterns of the net primary productivity (NPP) of the terrestrial vegetation and carbon emission (C) in the world due to the burning of fossil fuels in order to clarify the amount of expansion of human activity. The C/NPP value varies spatially from almost zero to several tens of thousand times the local NPP. C/NPP is higher under the condition of extensive human activities due to a high human population density or when the local NPP is extremely low in severe climatic zones. In contrast, the low C/NPP areas are distributed mainly in sparsely populated districts, loading to a low impact of human activity. Although the area where C/NPP is less than 10% accounts for about 70% of the entire land area, one-third of these areas cannot contribute to carbon absorption because of low NPP with a shortage of climatic resources. Since more than half of the areas of the remaining areas are agricultural land and forest ecosystems with high NPP, the possible afforestation area was evaluated to be maximum of $30{\times}10^{6}\;km^{2}$; here only sequestrate carbons that correspond to 2% of the global total NPP are present. These analyses revealed that presently most of the areas where the NPP is high are those exclusively used by humans and that it is difficult for large-scale forest plantations to absorb a substantial amount of the carbon emitted annually by humans.

Development of a Plasma-Dump Reformer for Syngas Production (합성가스 생산을 위한 플라즈마-덤프 개질기 개발)

  • Lim, Mun Sup;Kim, Eun Hyuk;Chun, Young Nam
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.6
    • /
    • pp.586-593
    • /
    • 2014
  • Limited sources of fossil fuels and also global climate changes caused by $CO_2$ emissions are currently discussed around the world. As a renewable, carbon neutral and widely available energy source, biogas is regarded as a promising alternative to fossil fuels. In this study, a plasma dump reformer was proposed to produce $H_2$-rich synthesis gas by a model biogas. The three-phase gliding arc plasma and dump combustor were combined. Screening studies were carried out with the parameter of a dump injector flow rate, water feeding flow rate, air ratio, biogas component ratio and input power. As the results, methane conversion rate, carbon dioxide conversion rate, hydrogen selectivity, carbon monoxide yield at the optimum conditions were achieved to 98%, 69%, 42%, 24.7%, respectively.

Non-energy Use and $CO_2$ Emissions: NEAT Results for Korea

  • Park, Hi-chun
    • Journal of Energy Engineering
    • /
    • v.11 no.1
    • /
    • pp.34-46
    • /
    • 2002
  • Carbon accounting is a key issue in the discussions on global warming/CO$_2$mitigation. This paper applies both the IPCC Approach and the NEAT (Non-Energy use Emission Accounting Tables) model, a bottom-up approach, to estimate the potential CO$_2$ emissions (carbon storage) originating from the non-energy use as to assess the actual CO$_2$ emissions (carbon release) from the use of fossil fuels in Korea. The current Korean carbon accounting seems to overestimate the potential CO$_2$ emissions and with it to underestimate the actual CO$_2$ emissions. The estimation shows that the potential CO$_2$ emissions calculated according to the IPCC Approach are lower than those calculated using the NEAT model. This is because the IPCC default storage fraction for naphtha seems to be low for the Korean petrochemical production structure, on the one hand and because the IPCC Approach does not consider the trade with short life petrochemical products, on the other hand. This paper shows that a bottom-up approach like the NEAT model can contribute to overcome some of limitations of the IPCC guidelines, especially by considering the international trade with short life petrochemical products and by estimating the storage fractions of fossil fuels used as feedstocks for the country in consideration. This paper emphasizes the importance of accurate energy statistics for carbon accounting.

Internal Flow Analysis of a Tubular-type Small Hydroturbine by Runner Vane Angle

  • Nam, Sang-Hyun;Kim, You-Taek;Choi, Young-Do;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.7
    • /
    • pp.1044-1050
    • /
    • 2008
  • Most of developed countries, the consumption of fossil fuels has been serious problems that cause serious environment pollution like acid rain, global warming. Also, we have faced that limitation fossil fuels will be exhausted. Currently, small hydropower attracts attention because of its small, clean, renewable, and abundant energy resources to develop. By using a small hydropower generator of which main concept is based on using the different water pressure levels in pipe lines, energy which was initially wasted by use of a reducing valve at the end of the pipeline, is collected by turbine in the hydropower generator. A propeller shaped hydroturbine has been used in order to use this renewable pressure energy. In this study, in order to acquire basic design data of tubular type hydraulic turbine, output power, head, efficiency characteristics due to the flow coefficient are examined in detail. Tubular-turbine among small hydraulic power generation can be used at low-head. The purpose of this study is to research turbine's efficiency due to runner vane angle using CFD analysis.