• Title/Summary/Keyword: fossil

Search Result 1,777, Processing Time 0.024 seconds

A Mathematical Programming Method for Minimization of Carbon Debt of Bioenergy (바이오에너지의 탄소부채 최소화를 위한 수학적 계획법)

  • Choi, Soo Hyoung
    • Clean Technology
    • /
    • v.27 no.3
    • /
    • pp.269-274
    • /
    • 2021
  • Bioenergy is generally considered to be one of the options for pursuing carbon neutrality. However, for a period of time, combustion of harvested plant biomass inevitably causes more carbon dioxide in the atmosphere than combustion of fossil fuels. This paper proposes a method that predicts and minimizes the total amount and payback period of this carbon debt. As a case study, a carbon cycle impact assessment was performed for immediate switching of the currently used fossil fuels to biomass. This work points out a fundamental vulnerability in the concept of carbon neutrality. As an action plan for the sustainability of bioenergy, formulas for afforestation proportional to the decrease in the forest area and surplus harvest proportional to the increase in the forest mass are proposed. The results of optimization indicate that the carbon debt payback period is about 70 years, and the carbon dioxide in the atmosphere increases by more than 50% at a maximum and 3% at a steady state. These are theoretically predicted best results, which are expected to be worse in reality. Therefore, biomass is not truly carbon neutral, and it is inappropriate as an energy source alternative to fossil fuels. The method proposed in this work is expected to be able to contribute to the approach to carbon neutrality by minimizing present and future carbon debt of the bioenergy that is already in use.

A Study on Structural Analysis for Improving Driving Performance of Agricultural Electric Car (농업용 전기운반차의 주행성능 향상을 위한 구조해석에 관한 연구)

  • Jo, Jae-Hyun;Lee, Sang-Sik
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.556-561
    • /
    • 2020
  • The aging and declining agricultural population in the modern society requires improvement of the agricultural environment and is one of the representative problems. And since most of the work systems always require a transport work, the ratio of labor consumed in the transport work is very high. Accordingly, many types of transport vehicles are being developed and sold, and in the early days, most of them are powered transport vehicles using fossil fuels. However, it is paying attention to next-generation eco-friendly energy such as hydrogen, fuel cells, solar power, and bio due to the strengthening of international environmental regulations such as global warming and the Convention on Climate Change and the depletion of fossil fuels. Therefore, in this study, the ultimate goal is to develop an eco-friendly, easy-to-operate, safe agricultural electric vehicle that replaces fossil fuels. It was designed with a focus on controlling a wide range of vehicle speeds and securing stability of electric agricultural vehicles. Considering the performance and design, it is composed of a frame, a driving part, a steering part, and a controller system, and we are going to review and manufacture each part. It is believed that the manufactured electric vehicle for agriculture can be easily and conveniently operated in an agricultural society where young manpower is scarce, and can be helpful to the agricultural society through high efficiency.

Revision of 22-year Records of Atmospheric Baseline CO2 in South Korea: Application of the WMO X2019 CO2 Scale and a New Baseline Selection Method (NIMS Filter) (지난 22년간 한반도 이산화탄소 배경농도 재산정 연구 - WMO/GAW 척도 변경과 NIMS 온실가스 배경농도 산출기법을 중심으로 -)

  • Seo, Wonick;Lee, Haeyoung;Kim, Yeon-Hee
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.593-606
    • /
    • 2021
  • The Korea Meteorological Administration/National Institute of Meteorological Sciences (KMA/NIMS) has monitored atmospheric CO2 at Anmyeondo (AMY) World Meteorological Organization (WMO) Global Atmosphere Watch Programme (GAW) regional station since 1999, and expanded its observations at Jeju Gosan Suwolbong station (JGS) in the South and at Ulleungdo-Dokdo stations in the East (ULD and DOK) since 2012. Due to a recent WMO CO2 scale update and a new filter (NIMS) to select baseline levels at each station, the 22 years of CO2 data are recalculated. After correction for the new CO2 scale, we confirmed that those corrected records are reasonable within the compatibility goal (±0.1 ppm of CO2) between KMA/NIMS and National Oceanic and Atmosphereic Administration (NOAA) flask-air measurements with the new scale. With the new NIMS filter, CO2 baseline levels are now more representative of the large-scale background compared to previous values, which contained large CO2 enhancements. Atmospheric CO2 observed in South Korea is 4 to 8 ppm greater than the global average while the amplitude of seasonal variation is similar (10~13 ppm) to the amplitude averaged over a comparable latitude zone (30°N-60°N). Variations in CO2 growth rate are also similar, increasing and decreasing similar to global values, as it reflects the net balance between terrestrial respiration and photosynthesis. In 2020, atmospheric CO2 continued increasing despite the COVID-19 pandemic. Even though fossil emission was reduced (around -7% globally), we still emitted large amounts of anthropogenic CO2. Overall, since CO2 has large natural variations and its source was derived from not only fossil fuel but also biomass burning, the small fossil emission reduction could not affect the atmospheric level directly.

Catalytic Hydrodeoxygenation of Biomass-Derived Oxygenates: a Review (바이오매스 유래 함산소 화합물의 수첨탈산소 촉매 반응: 총설)

  • Ha, Jeong-Myeong
    • Clean Technology
    • /
    • v.28 no.2
    • /
    • pp.174-181
    • /
    • 2022
  • Biomass is a sustainable alternative resource for production of liquid fuels and organic compounds that are currently produced from fossil fuels including petroleum, natural gas, and coal. Because the use of fossil fuels can increase the production of greenhouse gases, the use of carbon-neutral biomass can contribute to the reduction of global warming. Although biological and chemical processes have been proposed to produce petroleum-replacing chemicals and fuels from biomass feedstocks, it is difficult to replace completely fossil fuels because of the high oxygen content of biomass. Production of petroleum-like fuels and chemicals from biomass requires the removal of oxygen atoms or conversion of the oxygen functionalities present in biomass derivatives, which can be achieved by catalytic hydrodeoxygenation. Hydrodeoxygenation has been used to convert raw biomass-derived materials, such as biomass pyrolysis oils and lignocellulose-derived chemicals and lipids, into deoxygenated fuels and chemicals. Multifunctional catalysts composed of noble metals and transition metals supported on high surface area metal oxides and carbons, usually selected as supports of heterogeneous catalysts, have been used as efficient hydrodeoxygenation catalysts. In this review, the catalysts proposed in the literature are surveyed and hydrodeoxygenation reaction systems using these catalysts are discussed. Based on the hydrodeoxygenation methods reported in the literature, an insight for feasible hydrodeoxygenation process development is also presented.

Reconsideration of the Natural Monument Geummubong Petrified Tree Fern Fossil Site, Ghilgok, Korea (천연기념물 칠곡 금무봉 나무고사리 화석산지에 대한 고찰)

  • Seung-Ho Jung;Dal-Yong Kong
    • Economic and Environmental Geology
    • /
    • v.57 no.1
    • /
    • pp.93-105
    • /
    • 2024
  • Chilgok Geummubong tree fern fossil site is the type locality where tree fern stem fossils (Cyathocaulis naktongensis) were first discovered by Tateiwa in 1925. Recognized for its academic value, it was designated as a natural monument in the 1930s during the Japanese colonial period, and preserved and managed for over 90 years. However, at the time of discovery, the stratigraphic level of tree fern fossils could not be located because the fossils were fragments detached from the rock body, and thus the Geummubong area where the conglomerate/sandstone layers of the Nakdong Formation are distributed, has been designated as a cultural heritage area. Only in the 2000s, when tree fern fossils were directly recovered from the outcrops near the designated area, the sedimentary rock facies containing the fossils were interpreted, and the anatomical characteristics of the Mesozoic tree fern fossils could be described and identified as a species level. Such studies are, in these days, redefining classification criteria done by Japanese paleontologist, Ogura. That is, Korean researchers pointed out that the classification criteria of the tree fern fossils (Cyathocaulis) reported early from Chilgok were ambiguous, and the possibility that the two species were the same species was suggested. In addition, it is necessary to reorganize designated areas as a way to resolve social conflicts and civil complaints caused by various regulations that have continued for a long time.

Temperature Prediction and Control of Cement Preheater Using Alternative Fuels (대체연료를 사용하는 시멘트 예열실 온도 예측 제어)

  • Baasan-Ochir Baljinnyam;Yerim Lee;Boseon Yoo;Jaesik Choi
    • Resources Recycling
    • /
    • v.33 no.4
    • /
    • pp.3-14
    • /
    • 2024
  • The preheating and calcination processes in cement manufacturing, which are crucial for producing the cement intermediate product clinker, require a substantial quantity of fossil fuels to generate high-temperature thermal energy. However, owing to the ever-increasing severity of environmental pollution, considerable efforts are being made to reduce carbon emissions from fossil fuels in the cement industry. Several preliminary studies have focused on increasing the usage of alternative fuels like refuse-derived fuel (RDF). Alternative fuels offer several advantages, such as reduced carbon emissions, mitigated generation of nitrogen oxides, and incineration in preheaters and kilns instead of landfilling. However, owing to the diverse compositions of alternative fuels, estimating their calorific value is challenging. This makes it difficult to regulate the preheater stability, thereby limiting the usage of alternative fuels. Therefore, in this study, a model based on deep neural networks is developed to accurately predict the preheater temperature and propose optimal fuel input quantities using explainable artificial intelligence. Utilizing the proposed model in actual preheating process sites resulted in a 5% reduction in fossil fuel usage, 5%p increase in the substitution rate with alternative fuels, and 35% reduction in preheater temperature fluctuations.

Energy Yield, Power Quality and Grid Integration of Wind Energy Converters

  • Hanitsch R. E.
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.97-102
    • /
    • 2005
  • Because of the limited fossil resources and the need to avoid emissions and toxic waste the future energy supply will be based on a large portion of renewable energies: wind-, solar-, biomass- and geothermal energy. Focus is on the utilization of wind energy coming from onshore- and offshore-sites. Generating electricity from wind is state of the art and feeding large amounts of wind power into the electrical grid will create some additional problems. Suggestions concerning energy storage will be made and the problem of power quality is discussed.

A Study on the Turbine Performance in the steam seal variable clearance packing type of Steam turbine (증기터빈의 가변패킹 형태에 따른 터빈성능 평가에 관한 연구)

  • Kweon, Y.S.;Suh, J.S.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1676-1681
    • /
    • 2004
  • The main reason for applying positive pressure variable clearance packing in fossil power plant is high efficiency and energy saving movement in the government. This study intends to analyze the turbine efficiency through the shaft packing improvement in thermal power plant and makes its comparison to that of the each packing type

  • PDF

The Lubricity of Biodiesel as Alternative Fuel (대체연료로서 바이오디젤의 윤활성)

  • Lim, Young-Kwan;Lee, Cheon-Ho
    • Tribology and Lubricants
    • /
    • v.26 no.1
    • /
    • pp.78-87
    • /
    • 2010
  • Biodiesel have been studied as alternative fuel due to solution of air pollution and fossil fuel exhaustion. Biodiesel from animal fat and vegetable oil was known as eco-friendly fuel like low toxicity, biodegradable compare to petrodiesel. In particular, biodiesel have excellent lubricity due to involved ester functional group. This paper shows the biodiesel's lubricity based on worldwide biodiesel research.

Diagnosis of Excessive Vibration Signals of Two-Pole Generator Rotors in Balancing

  • Park, Jong-Po
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.590-596
    • /
    • 2000
  • Cause of excessive vibration with twice the rotational speed of a two-pole generator rotor for the fossil power plants was investigated. The two-pole generator rotor, treated as a typically asymmetric rotor in vibration analysis, produces asynchronous vibration with twice the rotational speed, sub-harmonic critical speeds, and potentially unstable operating zones due to its own inertia and/or stiffness asymmetry. This paper introduces a practical balancing procedure, and presents the results of the investigation on sources of the excessive vibration based on the experimental vibration data of the asymmetric two-pole rotor in balancing.

  • PDF