• Title/Summary/Keyword: fos

Search Result 618, Processing Time 0.026 seconds

Participation of nitric oxide pathways in interleukin 1$\beta$-induced mechanical allodynia in the orofacial area of rats

  • Kang, Young-M.;Lee, Min-K.;Yang, Gwi-Y.;Bae, Yong-C.;Ahn, Dong-K.
    • International Journal of Oral Biology
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • The purpose of the present study was to examine the role of peripheral nitric oxide (NO) pathways in the onset of interleukin (IL)-1$\beta$-induced mechanical allodynia in the orofacial area. Experiments were carried out on male Sprague-Dawley rats weighing 230-280 gm and surgical procedures were performed under pentobarbital sodium (40 mg/kg, i.p.). Under anesthesia, a polyethylene tube (PE10) was implanted into the subcutaneous area of one vibrissa pad, which enabled the injection of IL-1$\beta$ or other chemicals. We subcutaneously injected 50 ${\mu}L$ of IL-1$\beta$ into a vibrissa pad through the implanted polyethylene tube with a 100 ${\mu}L$ Hamilton syringe. After the administration of 0.01, 0.1, 1, or 10 pg of IL-1$\beta$, withdrawal behavioral responses were examined. The subcutaneous injection of saline had no effects on the air-puff thresholds. Following the subcutaneous injection of 0.01, 0.1, 1, or 10 pg of IL-1$\beta$, the threshold of air puffs decreased significantly to 12 $\pm$ 3, 7 $\pm$ 2, 5 $\pm$ 1, or 5 $\pm$ 1 psi, respectively, in a dose dependent manner. Pretreatment with L-NAME, a nitric oxide synthase (NOS) inhibitor, blocked IL-1$\beta$-induced mechanical allodynia. However, neither D-NAME, an inactive isomer of L-NAME, nor vehicle affected the IL-1$\beta$-induced mechanical allodynia. Subcutaneous injection of IL-1$\beta$ increased the number of c-fos-like immunoreactive neurons, whereas pretreatment with L-NAME decreased this number, in the trigeminal caudal nucleus. These results suggest that pro-inflammatory cytokines and NO are important contributors to the pathogenesis of persistent and exaggerated IL-1$\beta$-induced pain states. Based on these observations, peripheral application of NOS inhibitors may be of therapeutic value in treating pain disorders in the clinic.

Anti-nociceptive and Anti-inflammatory Effects of Gami-cheongyulsaseub-tang in Arthritic Model (관절염 모델에서 가미청열사습탕(加味淸熱瀉濕湯)의 진통 및 소염 효과에 관한 연구)

  • Kim, Il-Hyun;Lee, Ha-Il;Lee, Se-Won;Kwon, Young-Mi;Song, Yung-Sun
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.25 no.1
    • /
    • pp.27-44
    • /
    • 2015
  • Objectives This study was carried out to find the effects of Gami-cheongyulsaseub-tang (hereinafter referred to GCST) on the inhibition of zymosan-induced pain in rats and collagen II-induced arthritis (CIA) in DBA/1J mouse. Methods As an acute inflammatory pain model, peripheral inflammation was induced by intraplantar injection of zymosan into the right hind paw in rats and then the hyperalgesia and pain regulating factors in spinal cord were analyzed. As a chronic inflammation model, the mixture of collagen II and complete Freund's adjuvant was treated into mice to establish rheumatoid arthritis and then body weight, thickness of hind paw, pathological change of spleen, immunological rheumatoid factor (IgG1, IgG2a, IgG2b, IgM and anti-collagen II), pro-inflammatory cytokines, and bone injury were analyzed. Results In the acute inflammatory pain model, GCST significantly inhibited the thermal and mechanical hyperalgesia and the pain regulating factors, including Fos, CD11b, PKA and PKC, in the spinal cord with a dose-dependent manner. In the chronic rheumatoid arthritis model, GCST administration decreased arthritic index and paw edema as compared with CIA control group. In particular, GCST reduced significantly the serum levels of total IgG2a, IgG2b, IgM, and specific anti-collagen II, but not total IgG1. GCST also resulted in the attenuation of bone injury and spleen enlargement/adhesion in CIA mice. Moreover, the secretion of pro-inflammatory cytokines TNF-${\alpha}$ and IL-$1{\beta}$ in CIA mice was significantly reduced by GCST in a dose-dependent manner. Conclusions Comparison of the results in this study showed that GCST had anti-nociceptive and immunomodulatory effects. These data imply that GCST can be used as an effective drug for not only rheumatoid arthritic pain but also other auto-immune diseases.

Molecular Biological Study of Anti-cancer Effects of Bee Venom on Human Melanoma Cell (약침용봉독액(藥鍼用蜂毒液)이 흑색종세포(黑色腫細胞)에 미치는 항암효과(抗癌效果)에 대(對)한 분자생물학적(分子生物學的) 연구(硏究))

  • Park, Chan-Yol;Nam, Sang-Soo;Kim, Chang-Hwan;Lee, Jae-Dong;Kang, Sung-Keel;Lee, Yun-Ho;Ahn, Byoung-Choul
    • Journal of Acupuncture Research
    • /
    • v.17 no.2
    • /
    • pp.169-186
    • /
    • 2000
  • To study anti-cancer effect and molecular biological mechanism of bee venom for aqua-acupuncture, the effects of bee venom on cell viability, apoptosis, and cell cycle were analyzed using MTT assay, tryphan blue assay, [3H]thymidine release assay, flow cytometric analysis, activity of caspase-3 protease activity assay, and immunocytometric analysis of PCNA. To explore whether anti-cancer effects of bee venom are associated with the transcriptional control of gene expression, quantitative RT-PCR analysis of apoptosis- and cell cycle-related genes was performed. The obtained results are summarized as follows: 1. The MTT assay demonstrated that cell viability was decreased by bee venom in a dose-dependant manner. 2. Significant induction of apoptosis was identified using tryphan blue assay, [$^3H$]thymidine release assay, and flow cytometric analysis of sub $G_1$ fraction. 3. In analysis of caspase-3 protease activity, the activity had increased significantly, in a dose-dependant manner. 4. Quantitative RT-PCR analysis of the apoptosis-related genes showed that Bcl-2 and $Bcl-X_L$ were down-regulated whereas Bax was up-regulated by bee venom treatment. 5. In flow cytometric analysis of cell cycle and immunocytometric analysis of PCNA expression, cell numbers of $G_1$ phase was increased by a dose-dependant manner. 6. In quantitative RT-PCR analysis of the cell cycle-related genes, p21, p27, and p57 were increased, while Cyclin D1, CDK4, c-Myc, c-Fos, and Histone H3 were decreased. In contrast, there were no remarkable changes in expression levels of CDC2 and c-Jun.

  • PDF

Expression of Fra1 and Fra2 Genes are regulated by Estrogen in the Mouse Uterus (생쥐자궁에서 에스트로겐에 의해 조절되는 Fra1과 Fra2 유전자의 발현양상)

  • Lee, Ji-Yoon;Hong, Seok-Ho;Nah, Hee-Young;Kim, Sung-Hoon;Chae, Hee-Dong;Kim, Chung-Hoon;Kang, Byung-Moon;Kim, Moon-Kyoo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.30 no.4
    • /
    • pp.309-316
    • /
    • 2003
  • 연구목적: 스테로이드 계통의 에스트로겐 호르몬은 막 수용체와 결합하고 DNA에 부착되어, 자궁조직에서 발현되는 많은 유전자들의 발현 양상을 조절하는 것으로 알려져 있다. 본 연구에서는 난소를 제거한 생쥐 모델을 이용하여 에스트로겐에 의해 조절되는 전사 관련 유전자(transcription factor)들을 동정하고, early up-regulation gene으로 확인된 Fos related antigen (Fra1과 Fra2) 유전자의 발현 양상을 RT-PCR과 면역염색방법으로 살펴보았다. 연구재료 및 방법: 난소 절제술을 시행한 생쥐에 에스트로겐을 피하주사하고 2, 4, 6, 12시간 간격으로 자궁조직을 적출하였다. 대조군으로는 sesame oil만을 주사한 후 2시간째에 수획한 자궁조직을 사용하였으며, 시간대별로 채취한 자궁조직(n=4)에서 RT-PCR을 수행하였다. RT-PCR을 통해 early response gene으로 확인된 Fra1과 Fra2에 대한 에스트로겐의 영향을 살펴보기 위해 estrogen receptor antagonist인 ICI 182, 780을 주사하여 유전자 발현 양상의 변화를 살펴보았다. 또한, 자궁조직내에서의 단백질 발현 부위를 관찰하기 위해 면역조직화학염색을 실시하였다. 결 과: 생쥐 자궁조직에서 에스트로겐에 의해 발현 양상의 변화가 확인된 유전자는 early up-regulation genes (CREB2, Fra-1, 2, GATA5), late up-regulation gene (E2F1), no response genes (CREB1, ATF1, GLI3, E2F3), down-regulation genes (GLI2, E2F5, GATA-2, 3, 6) 등으로 구분할 수 있었다. 그 중 early up-regulation genes에 해당하는 Fra1과 Fra2 유전자는 ICI 182, 780에 의해 그 발현이 유의하게 감소되는 것을 확인하였다(p < 0.01). 이들 단백질은 생쥐 자궁조직의 상피세포층, 기질층, 근육층에서 고루 발현되었으며, 특히 근육층에서 강한 염색정도를 관찰할 수 있었다. 결 론: 이상의 결과를 통해 Fra1과 Fra2 유전자의 발현은 에스트로겐에 의해 조절됨을 알 수 있었으며, 이들의 강한 발현이 자궁조직의 근육층에서 관찰되어 이들의 기능에 대한 연구가 필요할 것으로 생각된다.

Effect of Ozone Water on Pesticide-Residual Contents of Soybean Sprouts during Cultivation (콩나물 재배중 잔류농약 함량에 미치는 오존수 처리 효과)

  • Kim, Soon-Dong;Kim, Il-Doo;Park, Mee-Za;Lee, Yoon-Gyeong
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.277-283
    • /
    • 2000
  • This study was conducted to investigate the effect of ozone treatment on the growth and pesticide-residual contents of soybean sprouts during cultivation. Total weight and length of the soybean sprouts treated by 0.3 ppm ozone water for 30min during soaking of soybean increased 27% and 19% higher than those of control group, respectively. But 27% of root weight decreased. No major differences in growth state were observed between the treatments during soaking and watering with ozone water, and watering with ozone water. Pesticide residues in soybeans treated with carbendazim, captain, diazinon, fenthim, dichlorvos and chlorpyrifos ranged from 4.75 to 8.35 ppm. The pesticides in soybean sprouts by the treatment of soaking and watering with water for 5 days, those by 0.3 ppm ozone-water watering, and those by soaking and watering with 0.3 ppm ozone water were destroyed to $85{\sim}99$, $89{\sim}100$ and $94{\sim}100%$, respectively. The order of degradation ratio in the pesticides was captan>dichlorvos>fenthion>carbendazin>diazinon>chlorpyrifos.

  • PDF

Analgesic Effects of Moxi-tar Pharmacopuncture on the Carrageenan-induced Arthritic Rats (Carrageenan 유도 관절염에 대한 구진(灸津) 약침(藥鍼)의 진통작용)

  • Koo, Sung-Tae;Shin, Jong-Keun;Choi, Yun-Young;Song, Jung-Bang;Kim, Jae-Hyo;Kim, Kyoung-Sik;Sohn, In-Chul
    • The Journal of Traditional Korean Medicine
    • /
    • v.15 no.1
    • /
    • pp.113-127
    • /
    • 2006
  • Objectives: This study was produced to examine the effects of moxibustion that had been played important role to traditional oriental medical treatment on disease. Recently, it was reported that moxi-tar which is generated in the process of moxibustion as burning combustibles decreased nitric oxide(NO) and inducible NO synthase (iNOS) generation in cellular experiments. Methods: Carrageenan-induced arthritis rat model was used to test the effect of moxi-tar as a chronic pain model. Diluted moxi-tar was single injected in several acupoints or combined with electroacupuncture (l ms, 2 Hz, and 2 mA) into contralateral ST36 acupoint for 30 min to assess the synergic effects. After the treatment, behavioral tests measuring stepping force were periodically conducted during the next 12 hours. Endogenous NO and iNOS, cyclooxygenase-2 (COX-2), and c-Fos protein expression in the spinal cord were examined on a rat model of carrageenan-induced arthritis. Results : After the induction of arthritis, rats subsequently showed a reduced stepping force of the affected limb for at least the next 4 days. The reduced stepping force of the limb was presumably due to a painful knee, since oral injection of indomethacin produced temporary improvement of weight bearing. Maxi-tar produced significant improvement of stepping force of the hindlimb affected by the arthritis lasting at least 9 hours. The magnitude of this improvement was equivalent to that obtained after an oral injection of 3 mg/kg of indomethacin and this improvement of stepping force was interpreted as an analgesic effect. Maxi-tar produced the improvement of stepping force of the affected hindlimb in a dose-dependent manner. Both NO production and iNOS, COX-2 protein expression increased by arthritis were suppressed by maxi-tar. Moxi-tar on combination with electroacupuncture (EA) produced more powerful and longer lasting improvement of stepping force of the hindlimb affected by the arthritis than either moxi-tar or EA did. Conclusion : The present study suggest that maxi-tar produces a potent analgesic effect on the chronic knee arthritis pain model in the rat and that moxi-tar-induced analgesia modulate endogenous NO through the suppression of iNOS/COX-2 protein expression.

  • PDF

Association between Tuberculosis Case and CD44 Gene Polymorphism (결핵 발병과 CD44 유전자 다형성사이의 연관성 연구)

  • Lim, Hee-Seon;Lee, Sang-In;Park, Sangjung
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.3
    • /
    • pp.323-328
    • /
    • 2019
  • Tuberculosis, a chronic bacterial infection caused by Mycobacterium tuberculosis (MTB), differs in its status latency and activity because of the characteristics of MTB, immune status of the host, and genetic susceptibility. The host defense mechanism against MTB is caused mainly by interactions between macrophages, T cells, and dendritic cells. CD44 is expressed in activated T cells when infected with MTB and regulates lymphocyte migration. In addition, CD44 mediates leukocyte adhesion to the ECM and plays a role in attracting macrophages and $CD4^+$ T cells to the lungs. Therefore, genetic polymorphism of the CD44 gene will inhibit the host cell immune mechanisms against MTB. This study examined whether the genetic polymorphism of the CD44 gene affects the susceptibility of tuberculosis. A total of 237 SNPs corresponding to the CD44 genes were analyzed using the genotype data of 443 tuberculosis cases and 3,228 healthy controls from the Korean Association Resource (KARE). Of these, 17 SNPs showed a significant association with the tuberculosis case. The most significant SNP was rs75137824 (OR=0.231, CI: 1.51~3.56, $P=1.3{\times}10^{-4}$). In addition, rs10488809, one of the 17 significant SNPs, is important for the tuberculosis outbreak can bind to the JUND and FOS transcription factors and can affect CD44 gene expression. This study suggests that polymorphism of the CD44 gene modulates the host susceptibility to tuberculosis in a variety of ways, resulting in differences in the status of tuberculosis.

The highly pathogenic H5N1 avian influenza virus induces the mitogen-activated protein kinase signaling pathway in the trachea of two Ri chicken lines

  • Vu, Thi Hao;Hong, Yeojin;Truong, Anh Duc;Lee, Sooyeon;Heo, Jubi;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Animal Bioscience
    • /
    • v.35 no.7
    • /
    • pp.964-974
    • /
    • 2022
  • Objective: The highly pathogenic avian influenza virus (HPAIV) is a threat to the poultry industry and economy and remains a potential source of pandemic infection in humans. Antiviral genes are considered a potential factor for studies on HPAIV resistance. Therefore, in this study, we investigated gene expression related to the mitogen-activated protein kinase (MAPK) signaling pathway by comparing non-infected, HPAI-infected resistant, and susceptible Ri chicken lines. Methods: Resistant (Mx/A; BF2/B21) and susceptible Ri chickens (Mx/G; BF2/B13) were selected by genotyping the Mx and BF2 genes. Then, the tracheal tissues of non-infected and HPAIV H5N1 infected chickens were collected for RNA sequencing. Results: A gene set overlapping test between the analyzed differentially expressed genes (DEGs) and functionally categorized genes was performed, including biological processes of the gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) pathways. A total of 1,794 DEGs were observed between control and H5N1-infected resistant Ri chickens, 432 DEGs between control and infected susceptible Ri chickens, and 1,202 DEGs between infected susceptible and infected resistant Ri chickens. The expression levels of MAPK signaling pathway-related genes (including MyD88, NF-κB, AP-1, c-fos, Jun, JunD, MAX, c-Myc), cytokines (IL-1β, IL-6, IL-8), type I interferons (IFN-α, IFN-β), and IFN-stimulated genes (Mx1, CCL19, OASL, and PRK) were higher in H5N1-infected than in non-infected resistant Ri chickens. MyD88, Jun, JunD, MAX, cytokines, chemokines, IFNs, and IFN-stimulated expressed genes were higher in resistant-infected than in susceptible-infected Ri chickens. Conclusion: Resistant Ri chickens showed higher antiviral activity compared to susceptible Ri chickens, and H5N1-infected resistant Ri chickens had immune responses and antiviral activity (cytokines, chemokines, interferons, and IFN-stimulated genes), which may have been induced through the MAPK signaling pathway in response to H5N1 infection.

Inhibitory Effect of Biotransformed-Fucoidan on the Differentiation of Osteoclasts Induced by Receptor for Activation of Nuclear Factor-κB Ligand

  • Park, Bobae;Yu, Sun Nyoung;Kim, Sang-Hun;Lee, Junwon;Choi, Sung Jong;Chang, Jeong Hyun;Yang, Eun Ju;Kim, Kwang-Youn;Ahn, Soon-Cheol
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.8
    • /
    • pp.1017-1025
    • /
    • 2022
  • Bone homeostasis is regulated by constant remodeling through osteogenesis by osteoblasts and osteolysis by osteoclasts and osteoporosis can be provoked when this balance is broken. Present pharmaceutical treatments for osteoporosis have harmful side effects and thus, our goal was to develop therapeutics from intrisincally safe natural products. Fucoidan is a polysaccharide extracted from many species of brown seaweed, with valuable pharmaceutical activities. To intensify the effect of fucoidan on bone homeostasis, we hydrolyzed fucoidan using AMG, Pectinex and Viscozyme. Of these, fucoidan biotransformed by Pectinex (Fu/Pec) powerfully inhibited the induction of tartrate-resistant acid phosphatase (TRAP) activity in osteoclasts differentiated from bone marrow macrophages (BMMs) by the receptor for activation of nuclear factor-κB ligand (RANKL). To investigate potential of lower molecular weight fucoidan it was separated into >300 kDa, 50-300 kDa, and <50 kDa Fu/Pec fractions by ultrafiltration system. The effects of these fractions on TRAP and alkaline phosphatase (ALP) activities were then examined in differentiated osteoclasts and MC3T3-E1 osteoblasts, respectively. Interestingly, 50-300 kDa Fu/Pec suppressed RANKL-induced osteoclasts differentiation from BMMs but did not synergistically enhance osteoblasts differentiation induced by osteogenic agents. In addition, this fraction inhibited the expressions of NFATc1, TRAP, OSCAR, and RANK, which are all key transcriptional factors involved in osteoclast differentiation, and those of Src, c-Fos and Mitf, as determined by RT-PCR. In conclusion, enzymatically low-molecularized 50-300 kDa Fu/Pec suppressed TRAP by downregulating RANKL-related signaling, contributing to the inhibition of osteoclasts differentiation, and represented a potential means of inducing bone remodeling in the background of osteoporosis.

The estrogen-related receptor γ modulator, GSK5182, inhibits osteoclast differentiation and accelerates osteoclast apoptosis

  • Kim, Hyun-Ju;Yoon, Hye-Jin;Lee, Dong-Kyo;Jin, Xian;Che, Xiangguo;Choi, Je-Yong
    • BMB Reports
    • /
    • v.54 no.5
    • /
    • pp.266-271
    • /
    • 2021
  • Estrogen-related receptor γ (ERRγ), a member of the orphan nuclear receptor family, is a key mediator in cellular metabolic processes and energy homeostasis. Therefore, ERRγ has become an attractive target for treating diverse metabolic disorders. We recently reported that ERRγ acts as a negative regulator of osteoclastogenesis induced by receptor activator of nuclear factor-κB ligand (RANKL). In the present study, we explored the effects of an ERRγ-specific modulator, GSK5182, on ERRγ-regulated osteoclast differentiation and survival. Interestingly, GSK5182 increased ERRγ protein levels much as does GSK4716, which is an ERRγ agonist. GSK5182 inhibited osteoclast generation from bone-marrow-derived macrophages without affecting cytotoxicity. GSK5182 also attenuated RANKL-mediated expression of cFos and nuclear factor of activated T-cells cytoplasmic 1 (NFATc1), pivotal transcription factors for osteoclastogenesis. Arrested osteoclast differentiation was associated with reduced RANK expression, but not with the M-CSF receptor, c-Fms. GSK5182 strongly blocked the phosphorylation of IκBα, c-Jun N-terminal kinase, and extracellular signal-regulated kinase in response to RANKL. GSK5182 also suppressed NF-κB promoter activity in a dose-dependent manner. In addition to osteoclastogenesis, GSK5182 accelerated osteoclast apoptosis by caspase-3 activation. Together, these results suggest that GSK5182, a synthetic ERRγ modulator, may have potential in treating disorders related to bone resorption.