• Title/Summary/Keyword: forward flow

Search Result 500, Processing Time 0.027 seconds

Experimental Study on the Performance of a Forward-Curved Centrifugal Fan for an Automotive Air-Conditioner (자동차 에어컨용 전곡형 원심 송풍기의 공력성능 분석)

  • Kwon, Eui-Yong;Cho, Nam-Hyo
    • 유체기계공업학회:학술대회논문집
    • /
    • 2000.12a
    • /
    • pp.122-128
    • /
    • 2000
  • Aerodynamic optimization of an automotive air-conditioning blower is a hard task because of the highly complex flow phenomena related to three-dimensional flow separations and the unsteady nature caused by the interaction between primary and secondary air flows throughout the fan. In this paper, an aerodynamic study on a forward-curved centrifugal fan has been carried out Firstly we obtained the fan performance curves versus flow rates showing its unstable nature in the surging operation range. Secondly aerodynamic characterizations were carried out by investigating the velocity and pressure fields in the casing flow passage using a 5-hole pilot probe, at different operating conditions. Surface flow pattern near the cut-off area exhibits similar flow behavior above the best efficiency operating point, although the pressure level increases substantially with the Increase of flow rate. Vorticity in the casing passage flow occurs in all (low rates, downstream from the r-Z plane $\theta$=120 deg., where the position of its core changes with the circumferential location. Although complex, the general flow behavior were common, giving insight in its main aerodynamic features.

  • PDF

Numerical Analysis of the Unsteady Pressure fluctuation Generated from the Interaction between a Vortex Flow with a Forward Step (와류와 전향계단의 상호작용에 의한 비정상 벽면압력 변동의 수치해석)

  • 유기완;이준신
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.3
    • /
    • pp.213-220
    • /
    • 2002
  • Modifying effects of the rectangular forward step for suppressing the unsteady pressure fluctuation during interaction between the upstream vortical flow and the edge are studied numerically. The vertical flow is modeled by a point vortex, and the unsteady pressure coefficient is obtained from the velocity and the potential fields. To investigate the effects of the edge shape the rectangular forward step is chamfered wish various angles. Calculation shows that the pressure peaks become decreased by increasing the vortex height as well as the chamfering angle. The pressure amplitudes are very sensitive to the change of the initial vertex height and its strength. From this study we can find out that the chamfered edge has two effects; the one is that it suppresses the pressure amplitude generated from the edge, and the other is that it decreases the time variation of unsteady pressure fluctuation. These modifying concepts can be applied to attenuate the self-sustained oscillation mechanism at the open cavity flow.

Wind Tunnel Test to Enhance Aerodynamic Characteristics of Forward Swept Wing Airplane (전진익형 항공기 공력특성 증진을 위한 풍동시험)

  • Chung, Jin-Deog;Lee, Jang-Yeon;Sung, Bong-Zoo;Lee, Jong-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.800-808
    • /
    • 2004
  • Wind tunnel test of an airplane model with forward swept wing was done in KARI LSWT to evaluate and measure the aerodynamic characteristics of initially designed configuration. Since the given wing planform did not fully satisfy the design requirements, local flow control devices such as vortilon, vortex generator and flow fence were used to delay separation and to enhance aerodynamic characteristics. Also decision making processes of design parameters such as vertical tail boom length, the location, size and the incidence angle of horizontal tail were discussed. The general aerodynamic characteristics of forward swept wing for various control surface deflection conditions of flap, aileron and elevator were also given.

Prediction of Manoeuvrability of a Ship with Low Forward Speed in Shallow Water (천수 영역에서 저속 운항하는 선박의 조종성능 추정에 관한 연구)

  • Kim, Se-Won;Yeo, Dong-Jin;Rhee, Key-Pyo;Kim, Dong-Jin
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.3
    • /
    • pp.280-287
    • /
    • 2008
  • In this paper, a mathematical model for a ship manoeuvring with low forward speed in shallow water was suggested. Based on the cross flow model with low forward speed in deep sea, hull, propeller and rudder models were modified to consider the shallow water effects. Static drift and PMM tests were performed to obtain the cross flow drag coefficients and hydrodynamic coefficients. To validate suggested mathematical model, numerical simulation results were compared with those of sea-trials. Through comparisons, it was concluded that suggested mathematical model could give proper estimation on turning test results.

Analysis of Flow Reversal by Tidal Elevation and Discharge Conditions in a Tidal River (감조하천에서 조위 및 유량조건에 따른 역류 분석)

  • Song, Chang Geun;Kim, Hyung-Jun;Rhee, Dong Sop
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.6
    • /
    • pp.104-110
    • /
    • 2014
  • The Han River is the only waterway in Korea where estuary is not blocked by dykes so that tidal water is flowing in and out through the tidal reach. The extreme tidal range in the Yellow Sea causes an intense flood current, stretching over horizontal extents of tens of kilometers into the rivers. To elucidate the flow reversal by discharge conditions and transient tidal level in the Han river, numerical simulations were conducted under 7 boundary conditions for two days with 10 minute time step. As the flow conditions changed from low discharge and high tidal difference to high discharge and low tidal difference, the flow reversals became weaker and the velocity of forward flow direction became higher due to the increased flow momentums and decreased tidal differences. In the case of normal flow, the maximum reverse velocity was 0.4 m/s, which was equivalent to the maximum forward velocity. In addition, the pattern of the development and decay of forward and reverse flow was presented.

Study on the Forward-sweep Inducer for Turbopumps (터보펌프용 전진익형 인듀서에 대한 연구)

  • Kim, Jin-Sun;Hong, Soon-Sam;Kim, Jin-Han;Choi, Chang-Ho
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.2 s.35
    • /
    • pp.25-29
    • /
    • 2006
  • Computational and experimental studies on the forward-sweep inducer for the rocket-engine turbopump are presented in comparison with the conventional backward-sweep inducer. Computational results show that back flows at the inlet decrease in the case of forward-sweep inducers compared to the back-ward inducer. Moreover, the low pressure region at the back flow is decreased, which is presumed to improve the suction performance of the inducers. Experimental results show that the suction performance of the forward-sweep inducer is almost the same as that of the backward-sweep inducer although it has smaller inlet tip diameter and shorter length. The efficiency of the forward-type inducer is found better than that of the backward-sweep inducer due to the small size of back flows.

Unsteady Staging Plow Analysis Using Moving Grid (움직이는 격자를 이용한 비정상 단분리 유동해석)

  • Kwon K. B.;Yoon Y. H.;Hong S. K.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.182-185
    • /
    • 2005
  • In this study, the numerical and dynamic simulation on staging problem including forward jet mechanism is conducted. The forward jet plays a vital role in staging, which jets out from aftbody. This staging environment needs full dynamic characteristics study and flow analysis for securing staging safety. Present study performs dynamic simulation of prebody and aftbody with flow analysis using Chimera grid scheme which is usually used for moving simulations. As a result, separation mechanism using forward jet well works in staging for given initial conditions and reverse thrust, chamber pressure variation from experiments. Furthermore, it is found that the technique using forward jets for staging is excellent for securing the separation safety.

  • PDF

A Study on the Performance of Centrifugal Blowers by Blades Characteristics (원심형 송풍기의 날개 특성에 따른 성능에 관한 연구)

  • Kim, J.W.;Ahn, E.Y.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.5 s.26
    • /
    • pp.13-19
    • /
    • 2004
  • Centrifugal blowers are widely used for air handling units in industry applications. The blower has a centrifugal impeller and a scroll casing including a driving component such as an electric motor. The impeller takes forward or backward blades to induce flows into the blower, Comprehensive investigation according to the two kinds of blades is systematically carried out for a guidance of design for this kind research. It is observed that flow rate of the blower with forward blades is larger than that of the system with backward blades. Otherwise, the system noise is more pronounced in the case of the blower with forward blades. The reason is due to larger velocity from the rotating forward blades that pose obtuse angle with the circumferential direction. The distinguished characteristics are validated by a parallel experiments with a wind tunnel and in an anechoic chamber. Numerical analysis for the system shows detail information inside the blades and the casing. A series of figures to show the flow details offer deep understanding of the performance of a centrifugal blower with different blades.

Optimal Flow Rate Evaluation for Low Energy, High Efficiency Cleaning of Forward Osmosis (FO) (정삼투 공정의 저에너지 고효율 세정을 위한 최적 유속 평가)

  • Kim, Yihyang;Kim, Jungbin;Zhan, Min;Min, Dahae;Hong, Seungkwan
    • Membrane Journal
    • /
    • v.29 no.6
    • /
    • pp.339-347
    • /
    • 2019
  • Forward osmosis (FO) is operated at a lower pressure than reverse osmosis (RO), which has great advantages in terms of fouling control, maintenance, membrane cleaning, and potential energy reduction. In particular, since the membrane fouling layer of the forward osmosis process has a relatively loose and dispersed property, it is possible to control the membrane fouling by physical cleaning, unlike the reverse osmosis process. However, existing studies do not apply the proper cleaning flow rate for forward osmosis physical cleaning, and thus there is a limit that the optimal operation can not be performed. Therefore, this study aims to evaluate the justification of proper flow rate that can show high efficiency cleaning with economical energy amount. The membrane fouling experiments of the forward osmosis process were maintained at a circulating flow rate of 8.54 cm/s and the recovery rates were compared with the three cleaning flow rates. As a result of this experiment, it was confirmed that the 2 × speed cleaning showed the same efficiency as the water permeability recovery rate of the 3 × speed cleaning, and it was confirmed that the 2 × speed cleaning was an appropriate flow rate with high cleaning efficiency and economical SEC.

Comparison of Forming force on forward and Backward Flow Forming for Combustion Chamber (연소기를 위한 전후방 유동성형에서의 성형력 비교)

  • Nam, Kyoun-Go;Cho, Cheon-Hwey;Hong, Sung-In
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.34-39
    • /
    • 2006
  • The flow forming has been used to produce long thin walled tube parts, with reduced forming force and enhanced mechanical for a good finished part, compared with other method formed parts. Especially, the flow forming is suitable for making high precision thin walled cylinders, such as rocket motor cases, combustion chamber, hydraulic cylinders and high-pressure vessels and so on. In this paper, finite element analysis of three-roller forward and backward flow forming for combustion chamber is carried out to study effects of forming depth and feed rate on forming force. The axial and radial forming forces of forward flow forming on several forming depth and feed rate conditions are compared with those of backward flow forming.