• Title/Summary/Keyword: forward converter

Search Result 287, Processing Time 0.028 seconds

High Frequency Soft Switching Forward DC/DC Converter (고주파 소프트 스위칭 Forward DC/DC 컨버터)

  • 김은수;최해영;조기연;김윤호
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.19-25
    • /
    • 1999
  • To achieve high efficiency in high power and high frequency applications, reduction of switching losses and noise is very important. In this paper, an improved zero voltage switching forward dc/dc converter is proposed. The proposed converter is constructed by using energy recovery snubbers in parallel with the main switches and output diodes of the conventional forward dc/dc converter. Due to the use of the energy recovery snubbers in the primary and secondary side, the proposed converter achieves zero-voltage-switching turn-off without switching losses for switching devices and output rectification diodes. The complete operating principles and experimental results will be presented.

Balanced Forward-Flyback Converter for High Efficiency and High Power Factor LED Driver (고효율 및 고역률 LED 구동회로 위한 Balanced Forward-Flyback 컨버터)

  • Hwang, Min-Ha;Kang, Jeong-Il;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.492-500
    • /
    • 2013
  • A balanced forward-flyback converter for high efficiency and high power factor using a foward and flyback converter topologies is proposed in this paper. The conventional AC/DC flyback converter can achieve a good power factor but it has the high offset current through the transformer magnetizing inductor, which results in a large core loss and low power conversion efficiency. And, the conventional forward converter can achieve the good power conversion efficiency with the aid of the low core loss but the input current dead zone near zero cross AC input voltage deteriorates the power factor. On the other hand, since the proposed converter can operate as the forward and flyback converters during switch turn-on and turn-off periods, respectively, it cannot only perform the power transfer during an entire switching period but also achieve the high power factor due to the flyback operation. Moreover, since the current balanced capacitor can minimize the offset current through the transformer magnetizing inductor regardless of the AC input voltage, the core loss and volume of the transformer can be minimized. Therefore, the proposed converter features a high efficiency and high power factor. To confirm the validity of the proposed converter, theoretical analysis and experimental results from a prototype of 24W LED driver are presented.

Analysis, Design and Implementation of an Improved ZVZCS-PWM Forward converter

  • Soltanzadeh, Karim;Dehghani, Majid;Khalilian, Hosein
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.197-204
    • /
    • 2014
  • In this paper an Improved Zero Voltage Zero Current Pulse Width Modulation Forward converter which employs a simple resonance snubber circuit is introduced. A simple snubber circuit consists of a capacitor, an inductor and two diodes. In proposed converter, switch Q1 operates at ZCS turn-on, and ZVS turn-off conditions and all-passive semiconductor devices operate at ZVZCS turn-on and turn-off state. The proposed converter is analyzed and various operating modes of the ZVZCS-PWM forward converter are discussed. Analysis and design considerations are presented and the prototype experimental results of a 100w (40 V/2.5A) proposed converter operating at 30 KHz switching frequency confirm the validity of theoretical analysis.

An Improved ZVS Active Clamp Forward Converter (개선된 영전압 스위칭 액티브 클램프 포워드 컨버터)

  • Choi Sun-Ho;Lee Hyun-Kwan;Kim Eun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.3
    • /
    • pp.302-311
    • /
    • 2005
  • We propose an improved active forward converter by adding a non-dissipative snubber circuit to the secondary of the conventional active clamp forward converter in this paper. The snubber circuit is composed of a tapped inductor, a snubber capacitor, and two diodes. Comparing with the conventional one, the proposed one makes it possible ZVS to operate in a smaller magnetizing current condition. The operational principles and the equivalent mode analysis of an improved active forward converter are mentioned in this paper. In conclusion, we constructed the prototype of the modified active forward converter with 300W output capacity and verified higher efficiency compared to the conventional one.

A Comparative Study of Operation Characteristics of Active Clamp Forward Converter Based on Loss analysis

  • Oh, Deog-Jin;Kim, Hee-Jun
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.636-641
    • /
    • 1998
  • In this paper, operation characteristics of the Zero-voltage-Switching(ZVS) mode and Non-Zero-Voltage-Switching (NZVS) mode of the active clamp (ACL) forward converter are compared through the loss analysis. The losses of semiconductor devices, transformer and passive elements of the converter are analyzed and compared for each type of operation mode. In order to verify the validity of the analysis, we have built a 50W ACL forward converter and measured the losses of the converter. From the experiment it is known that the ACL forward converter shows nearly same loss distribution for both of operation modes

  • PDF

Considerations of Single Magnetic Integrated built-in Filter Push-Pull Forward Converter characteristics (푸쉬 풀 포워드 컨버터의 효율 특성 고찰)

  • Jeon, June-Seok;Kim, Chang-Sun;Kim, Tea-Sik;Im, Bum-Sun;Woo, Seung-Hun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1232-1234
    • /
    • 2003
  • The push pull forward converter is a very suitable circuit for low output voltage, high output current applications with a wide input voltage range. This converter can be miniaturized by integrate magnetic components such as the output inductor, the transformer and the input inductor. We considered of the efficiency for the push pull forward converter. Developed the push pull forward converter rating are of $36{\sim}72V$ input and 3.3V/30A output. In this converter. the efficiency was measured by 76.4% at full load and 82.95% at half load. The maximum efficiency is up to 83.% at 200kHz, 11A output.

  • PDF

Wide Input Range Active Clamp Forward Converter Design (넓은 입력전압 능동 클램프 포워드 컨버터 설계)

  • Chun, Moon-Il;Kim, Chang-Sun;Ma, Byung-In
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.64-65
    • /
    • 2008
  • The topology of active clamp forward converter provides ZVS characteristic and also the stress of voltage and current is smaller than that of the conventional forward converters. The benefits of this technique include a higher efficiency at a high switching frequency, lower EMI/RFI. In this paper, the active clamp forward converter is designed for operation in wide range voltage and has 19.5V/120W ratings with efficiency more than 90%.

  • PDF

Study on Soft-Switching Forward-Flyback PWM DC/DC Converter using Assistant-Circuit (보조회로를 응용한 소프트 스위칭 Forward-Flyback PWM DC/DC 컨버터에 관한 연구)

  • 박성준;오세욱;계문호;김광태;김철우
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.4
    • /
    • pp.90-99
    • /
    • 1998
  • The DC/DC power converter increase switching frequency in order to achieve small size, a low noise, and light weight. However, the power switches have high power losses and switching stresses as the switching frequency is increased. Therefore in this paper, the author propose the Soft-Switching Forward-Flyback PWM DC/DC converter using assistant-circuit, based on forward-flyback operation of a high-frequency transformer. The proposed converter scheme is verified by simulation and experiment.

  • PDF

High Frequency Soft Switching Forward DC/DC Converter Using Non-dissipative Snubber (무손실 스너버적용 고주파 소프트 스위칭 Forward 컨버터)

  • 최해영;김은수;변영복;김철수;김윤호
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.614-617
    • /
    • 1999
  • To achieve high efficiency in high power and high frequency applications, reduction of switching losses and noise is very important. In this paper, an improved zero voltage switching forward dc/dc converter is proposed. The proposed converter is constructed by using energy recovery snubbers in parallel with the main switches and output diodes of the conventional forward dc/dc converter. Due to the use of the energy recovery snubbers in the primary and secondary side, the proposed converter achieves zero-voltage-switching turn-off without switching losses for switching devices and output rectification diodes. The complete operating principles and experimental results will be presented.

  • PDF

Finite Element Analysis of Transformer for Forward Converter (Forward Converter 용 변압기의 유한요소 해석에 관한연구)

  • Kim, H.S.;Kim, B.T.;Kwon, B.I.;Park, S.C.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.49-51
    • /
    • 1997
  • This paper deals with analysis of high frequency transformer for forward converter using the finite element method and circuit analysis. Finite element analysis considering magnetic nonlinearity of ferrite core and circuit analysis are utilized when converter switch(FET) is on and off, respectively. As a result, the primary current and load current of a forward converter are obtained under the various load conditions.

  • PDF