• Title/Summary/Keyword: forming gas

Search Result 490, Processing Time 0.024 seconds

A numerical study on the vaporization of a droplet considering internal circulating flow in the presence of an oscillating flow (진동하는 유동장하에서 내부 순환 유동을 고려한 액적의 증발에 관한 수치적 연구)

  • Ha, Man-Yeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.5
    • /
    • pp.1700-1716
    • /
    • 1996
  • The two-dimensional, unsteady, laminar conservation equations for mass, momentum, energy and species transport in the gas phase and mass, momentum and energy in the liquid phase are solved simultaneously in spherical coordinates in order to study heating and vaporization of a droplet entrained in the oscillating flow. The numerical solution gives the velocity and temperature distribution in both gas and liquid phase as a function of time. When the gas flow oscillates around an vaporizing droplet, the liquid flow circulates in the clockwise or counterclockwise direction and the temperature distribution in the liquid phase changes its shapes, depending on the gas fow direction. When the gas flow changes its direction of circulating liquid flow is opposite to the gas flow, forming two vortex circulating in the opposite direction. During the heating period, the difference in the maximum and minimum temperature is large, followed by the almost uniform temperature slightly below the boiling temperature. The mass and heat transfer from the droplet depend on the droplet temperature, droplet diameter and the magnitude of relative velocity, giving the droplet lifetime different from the d$^{2}$-law.

Sustained Nuclear Star Formation and the Growth of a Nuclear Bulge

  • Kim, Sung-Soo S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.142.2-142.2
    • /
    • 2011
  • Hydrodynamic simulations of gas clouds in the central hundred parsecs region of the Milky Way that is modeled with a three-dimensional bar potential are presented. Our simulations consider realistic gas cooling and heating, star formation, and supernova feedback. A ring of dense gas clouds forms as a result of $X_1-X_2$ orbit transfer, and our potential model results in a ring radius of ~200 pc, which coincides with the extraordinary reservoir of dense molecular clouds in the inner bulge, the Central Molecular Zone (CMZ). The gas clouds accumulated in the CMZ can reach high enough densities to form stars, and with an appropriate choice of simulation parameters, we successfully reproduce the observed gas mass and the star formation rate (SFR) in the CMZ, ${\sim}2{\times}10^7\;M_{\odot}$ and ${\sim}0.1\;M_{\odot}/yr$. Star formation in our simulations takes place mostly in the outermost $X_2$ orbits, and the SFR per unit surface area outside the CMZ is much lower. These facts suggest that the inner Galactic bulge may harbor a mild version of the nuclear star-forming rings seen in some external disk galaxies. We also find that the stellar population resulting from sustained star formation in the CMZ would be enlogated perpendicularly to the main bar, and this "inner bar" can migrate the gas in the CMZ further down to the central parsecs region.

  • PDF

Electrospun Metal Oxide Composite Nanofibers Gas Sensors: A Review

  • Abideen, Zain Ul;Kim, Jae-Hun;Lee, Jae-Hyoung;Kim, Jin-Young;Mirzaei, Ali;Kim, Hyoun Woo;Kim, Sang Sub
    • Journal of the Korean Ceramic Society
    • /
    • v.54 no.5
    • /
    • pp.366-379
    • /
    • 2017
  • Nanostructured materials have attracted considerable research interest over the recent decades because of their potential applications in nanoengineering and nanotechnology. On the other hand, the developments in nanotechnology are strongly dependent on the availability of new materials with novel and engineered morphologies. Among the novel nanomaterials reported thus far, composite nanofibers (NFs) have attracted considerable attention in recent years. In particular, metal oxide NFs have great potential for the development of gas sensors. Highly sensitive and selective gas sensors can be developed by using composite NFs owing to their large surface area and abundance of grain boundaries. In composite NFs, gas sensing properties can be enhanced greatly by tailoring the conduction channel and surface properties by compositional modifications using the synergistic effects of different materials and forming heterointerfaces. This review focuses on the gas sensing properties of composite NFs synthesized by an electrospinning (ES) method. The synthesis of the composite NFs by the ES method and the sensing mechanisms involved in different types of composite NFs are presented along with the future perspectives of composite NFs.

Cosmological Origin of Satellites around Isolated Dwarf Galaxies

  • Chun, Kyungwon;Shin, Jihye;Smith, Rory;Kim, Sungsoo S.
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.2
    • /
    • pp.39.1-39.1
    • /
    • 2019
  • We trace the cosmological origin of satellites around isolated dwarf galaxies using a very high resolution (12 pc/h) cosmological hydrodynamic zoom simulation. To realistically describe the formation and evolution of small-mass stellar satellites, our model includes a full baryonic physics treatment. We find that the mini-halos form objects resembling dwarf galaxies. The majority of their star forming gas is accreted after reionization, thus the survival of a mini-halo's gas to reionization is not an important factor. Instead, the key factor seems to be the ability for a mini-halo to cool its recently accreted gas, which is more efficient in more massive halos. Although the host galaxy is only a dwarf galaxy itself, we find that ram pressure is an efficient means by which accreted mini-halos lose their gas content, both by interacting with hot halo gas but also in direct collisions with the gas disk of the host. The satellites are also disrupted by the tidal forces near the center of the host galaxy. Compared to the disrupted satellites, surviving satellites are relatively more massive, but tend to infall later into the host galaxy, thus reducing the time they are subjected to destructive environmental mechanisms and dynamical friction.

  • PDF

Complex organic molecules detected in twelve high mass star forming regions with ALMA

  • Baek, Giseon;Lee, Jeong-Eun;Hirota, Tomoya;Kim, Kee-Tae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.37.3-38
    • /
    • 2021
  • One of the key questions on star formation is how the organic molecules are synthesized and delivered to the planets and comets since they are the building blocks of prebiotic molecules such as amino acid, which is thought to contribute to bringing life on Earth. Recent astrochemical models and experiments have explained that complex organic molecules (COMs; molecules composed of six or more atoms) are produced on the dust grain mantles in cold and dense gas in prestellar cores. However, the chemical networks and the roles of physical conditions on chemistry are not still understood well. To address this question, hot (> 100 K) cores in high mass young stellar objects (M > 8 Msun) are great laboratories due to their strong emissions and larger samples than those of low-mass counterparts. In addition, CH3OH masers, which have been mostly found in high mass star forming regions, can provide constraints due to their very unique emerging mechanisms. We investigate twelve high mass star forming regions in ALMA band 6 observation. They are associated with 44/95 GHz Class I and 6.7 GHz Class II CH3OH masers, implying that the active accretion processes are ongoing. For these previously unresolved regions, 66 continuum peaks are detected. Among them, we found 28 cores emitting COMs and specified 10 cores associated with 6.7 GHz Class II CH3OH masers. The chemical diversity of COMs is found in cores in terms of richness and complexity; we identified up to 19 COMs including oxygen- and nitrogen-bearing molecules and their isotopologues in a core. Oxygen-bearing molecules appear to be abundant and more complex than nitrogen-bearing species. On the other hand, the COMs detection rate steeply grows with the gas column density, which can be attributed to the effective COMs formation in dense cores.

  • PDF

Development of Ceramic Composite Membranes for Gas Separation: V. Synthesis of Nanoparticulate Silica Membranes by the Pressurized Sol-Gel Coating Technique (기체분리용 세라믹 복합분리막의 개발 : V. 가압 졸-겔 코팅법에 의한 rrmaltp입자 실리카 막의 합성)

  • 현상훈;윤성필;김준학
    • Journal of the Korean Ceramic Society
    • /
    • v.30 no.3
    • /
    • pp.189-198
    • /
    • 1993
  • A new pressurized sol-gel coating technique forming membrane layers inside pores of the porous support by the simple operation has been developed. Crack-free and reproducible nanoparticulate silica membranes supported on the porous $\alpha$-alumina tube are synthesized by pressurized coating at 600kPa for 2hr. The pore radius and N2 gas permiability at the room temperature of silica membrane layers are 8$\AA$ and 7.0$\times$10-7mol/$m^2$.s.Pa, respectively. The mechanism of N2 gas transfer through synthesized membrane layers is the perfect Knudeen flow, and the thermal stability of the silica composite membranes is excellent upto 40$0^{\circ}C$.

  • PDF

Effect of gas detonation on response of circular plate-experimental and theoretical

  • Babaei, Hashem;Mostofi, Tohid Mirzababaie;Sadraei, Seyed Hamidreza
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.535-548
    • /
    • 2015
  • A series of experimental results on thin mild steel plates clamped at the boundary subjected to gas detonation shock loading are presented. Detonation occurred by mixing Acetylene (C2H2)-Oxygen (O2) in various volume ratio and different initial pressure. The applied impulse is varied to give deformation in the range from 6 mm to 35 mm. Analytical modeling using energy method was also performed. Dependent material properties, as well as strain rate sensitivity, are included in the theoretical modeling. Prediction values for midpoint deflections are compared with experimental data. The analytical predictions have good agreement with experimental values. Moreover, it has been shown that the obtained model has much less error compared with those previously proposed in the literature.

Characterization of Synthesized WS$_2$ Solid Lubricant (합성 WS$_2$ 고체윤활제의 특성 분석)

  • 신동우;윤대현;최인혁;김인섭
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1997.10a
    • /
    • pp.211-216
    • /
    • 1997
  • The tungsten disulfide (WS$_2$) solid lubricant was synthesized by two different reaction processes, and the chemical and physical characteristics of synthesized WS$_2$ powder were analyzed in terms of the average particle size, morphology, crystalline phase. The solid WO$_3$ powder with the average size of 0.2 $\mu$m was reacted with CS$_2$ gas flowed with N$_2$ or 96% N$_2$ + 4% H$_2$ forming gas for 36 h and 24 h at 900$\circ$C respectively. In the case of vapour phase transport method, the 3.5 wt% iodine was added as a vapour transport reagent into the composition of tungsten and sulfur powders maintaining a constant molar ratio of W : S = 1 : 2.2. The mixture was then heat treated at 850$\circ$C for 2 weeks in vacuum The reaction product obtained showed the average size of 12 $\mu$m and the hexagonal plate shape of typical solid lubricant with 2H-WS$_2$ crystalline phase.

  • PDF

Variation of Functional Characteristics of Illite with Heat Treatment (소결온도에 따른 일라이트 기능성 변화)

  • Kim, Ho-Soo;Kim, Han-Il;Seo, Pan-Seok;Koo, Kyung-Wan;Han, Sang-Ok
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.117-121
    • /
    • 2002
  • In this paper, the proper manufacturing method to the use of Illite with many application was studied. We confirmed merit of manufacturing and forming according as respective temperature. The variety of crystallization and surface was confirmed by X-ray diffraction(XRD) analysis and SEM. Then, we performed the experiments such as a antibiosis, a heavy metal adsorption and a gas deodorizaton to confirm the function of Illite. As a result, the adsorption of gas decreased according as the heat treatment of Illite, but the ability of antibiosis wasn't changed.

  • PDF

Characterization of Air and SO2 Gas Corrosion of Silicon Carbide Nanofibers (탄화규소 나노섬유의 고온 대기 및 SO2 가스분위기에서의 부식물성)

  • Kim, Min-Jung;Lee, Dong-Bok
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.1
    • /
    • pp.36-40
    • /
    • 2010
  • The SiO vapor that was generated from a mixture of Si and $SiO_2$ was reacted at $1350^{\circ}C$ for 2 h under vacuum with carbon nanofibers to produce SiC nanofibers having an average diameter of 100~200 nm. In order to understand the gas corrosion behavior, SiC nanofibers were exposed to air up to $1000^{\circ}C$. SiC oxidized to amorphous $SiO_2$, but its oxidation resistance was inferior unlike bulk SiC, because of high surface area of nanofibers. When SiC nanofibers were exposed to Ar-1% $SO_2$ atmosphere, SiC oxidized to amorphous $SiO_2$, without forming $SiS_2$, owing to the thermodynamic stability of $SiO_2$.