• Title/Summary/Keyword: forming agent

Search Result 259, Processing Time 0.025 seconds

Fabrication of Porous Cu Layers on Cu Pillars through Formation of Brass Layers and Selective Zn Etching, and Cu-to-Cu Flip-chip Bonding (황동층의 형성과 선택적 아연 에칭을 통한 구리 필라 상 다공성 구리층의 제조와 구리-구리 플립칩 접합)

  • Wan-Geun Lee;Kwang-Seong Choi;Yong-Sung Eom;Jong-Hyun Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.4
    • /
    • pp.98-104
    • /
    • 2023
  • The feasibility of an efficient process proposed for Cu-Cu flip-chip bonding was evaluated by forming a porous Cu layer on Cu pillar and conducting thermo-compression sinter-bonding after the infiltration of a reducing agent. The porous Cu layers on Cu pillars were manufactured through a three-step process of Zn plating-heat treatment-Zn selective etching. The average thickness of the formed porous Cu layer was approximately 2.3 ㎛. The flip-chip bonding was accomplished after infiltrating reducing solvent into porous Cu layer and pre-heating, and the layers were finally conducted into sintered joints through thermo-compression. With reduction behavior of Cu oxides and suppression of additional oxidation by the solvent, the porous Cu layer densified to thickness of approximately 1.1 ㎛ during the thermo-compression, and the Cu-Cu flip-chip bonding was eventually completed. As a result, a shear strength of approximately 11.2 MPa could be achieved after the bonding for 5 min under a pressure of 10 MPa at 300 ℃ in air. Because that was a result of partial bonding by only about 50% of the pillars, it was anticipated that a shear strength of 20 MPa or more could easily be obtained if all the pillars were induced to bond through process optimization.

Berberine Suppresses Hepatocellular Carcinoma Proliferation via Autophagy-mediated Apoptosis (베르베린을 처리한 간세포암에서 자가포식 경로와 관련된 세포자멸사)

  • Yun Kyu Kim;Myeong Gu Yeo
    • Journal of Life Science
    • /
    • v.34 no.5
    • /
    • pp.287-295
    • /
    • 2024
  • Hepatocellular carcinoma (HCC) is the second leading cause of cancer-related mortality worldwide, necessitating novel therapeutic strategies. The chemotherapeutic agents used to treat HCC patients are toxic and have serious side effects. Therefore, we investigated the efficacy of anticancer drugs that reduce side effects by targeting tumor cells without causing cytotoxicity in healthy hepatocytes. Berberine, an isoquinoline alkaloid derived from plant compounds, has emerged as a potential candidate for cancer treatment due to its diverse pharmacological properties. The effect of berberine on HepG2 cell viability was determined using the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide assay. HepG2 cell proliferation was determined through a colony-forming assay. The effects of berberine on HepG2 cell migration were evaluated using a wound-healing assay. Berberine inhibited the proliferation of HepG2 cells, as well as colony formation and migration. Berberine treatment increased the expression of autophagy-related genes and proteins, including Beclin-1 and LC3-II, and elevated the activities and mRNA expression of Caspase-9 and Caspase-3. Additionally, in experiments utilizing the Cell-Derived Xenograft animal model, berberine treatment reduced tumor size and weight in a concentration-dependent manner. These results demonstrate the potential of berberine as a versatile anticancer agent with efficacy in both cellular and animal models of hepatocellular carcinoma. The findings herein shed light on berberine's efficacy against HCC, presenting opportunities for targeted and personalized therapeutic interventions.

The Therapeutic Effect of Lactobacillus reuteri in Acute Diarrhea in Infants and Toddlers (영유아의 급성 설사에서 Lactobacillus reuteri의 치료 효과)

  • Eom, Tae-Hun;Oh, Eun-Young;Kim, Young-Hoon;Lee, Hyun-Seung;Jang, Pil Sang;Kim, Dong-un;Kim, Jin-Tack;Lee, Byung-Churl
    • Clinical and Experimental Pediatrics
    • /
    • v.48 no.9
    • /
    • pp.986-990
    • /
    • 2005
  • Purpose : Certain strains of lactobacilli are known to accelerate recovery from acute diarrhea. Lactobacillus reuteri is isolated from human breast milk and a commonly occurring Lactobacillus species with therapeutic potential in acute diarrhea. The purpose of the present study was to investigate the therapeutic effect of L. reuteri in acute diarrhea in young children. Methods : Fifty patients between 6 and 36 months of age hospitalized with acute diarrhea (rotavirus in 40 percent) were randomized into two groups to receive either $10^8$ colony-forming units of L. reuteri or a matching placebo, twice a day for their length of hospitalization, or for up to 5 days. Antidiarrheal drugs were not prescribed to either group. The clinical outcome of diarrhea was evaluated. Results : The mean duration of watery diarrhea after initiation of treatment was 2.3 days for the L. leuteri group(n=25) vs. 2.9 days for the placebo group(n=25)(P=0.072). By the second day of treatment, watery diarrhea persisted in 64 percent of patients receiving L. reuteri, compared to 84 percent of those receiving placebo(P=0.006). On the second day, the mean frequency of watery diarrhea was 1.9 in the L. leuteri group and 3.4 in the placebo(P=0.046). Also, vomiting continued to the second day in 16 percent of patients receiving L. reuteri and 40 percent of those recieving placebo(P=0.031). Conclusion : L. reuteri is effective as a therapeutic agent in acute diarrhea in children.

Development of $^{99m}Tc$-Transferrin as an Imaging Agent of Infectious Foci (감염병소 영상을 위한 $^{99m}Tc$-Transferrin 개발)

  • Kim, Seong-Min;Song, Ho-Chun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.3
    • /
    • pp.177-185
    • /
    • 2006
  • Purpose: Purpose of this study is to synthesize $^{99m}Tc$-labeled transferrin for injection imaging and to compare it with $^{67}Ga$-titrate for the detection of infectious foci. Materials and methods: Succinimidyl 6-hydrazino-nicotinate hydrochloride-chitosan-transferrin (Transferrin) was synthesized and radiolabeled with $^{99m}Tc$. Labeling efficiencies of $^{99m}Tc$-Transferrin were determined at 10 min, 30 min, 1 hr, 2 hr, 4 hr and 8 hr. Biodistribution and imaging studies with $^{99m}Tc$-Transferrin and $^{67}Ga$-citrate were performed in a rat abscess model induced with approximately $2{\times}10^8$ colony forming unit of Staphylococcus aureus ATCC 25923. Results: Successful synthesis of Transferrin was confirmed by mass spectrometry. Labeling efficiency of $^{99m}Tc$-Transferrin was $96.2{\pm}0.7%,\;96.4{\pm}0.5%,\;96.6{\pm}1.0%,\;96.9{\pm}0.5%,\;97.0{\pm}0.7%\;and\;95.5{\pm}0.7%$ at 10 min, 30 min, 1 hr, 2 hr, 4 hr and 8 hr, respectively. The injected dose per tissue gram of $^{99m}Tc$-Transferrin was $0.18{\pm}0.01\;and\;0.18{\pm}0.01$ in the lesion and $0.05{\pm}0.01\;and\;0.04{\pm}0.01$ in the normal muscle, and lesion-to-normal muscle uptake ratio was $3.7{\pm}0.6\;and\;4.7{\pm}0.4$ at 30 min and 3 hr, respectively. On image, lesion-to-background ratio of $^{99m}Tc$-Transferrin was $2.18{\pm}0.03,\;2.56{\pm}0.11,\;3.08{\pm}0.18,\;3.77{\pm}0.17,\;4.70{\pm}0.45\;and\;5.59{\pm}0.40$ at 10 min, 30 min, 1 hr, 2 hr, 4 hr and 10 hr and those of $^{67}Ga$-citrate was $3.06{\pm}0.84,\;4.12{\pm}0.54\;and\;4.55{\pm}0.74 $ at 2 hr, 24 hr and 48 hr, respectively. Conclusion: Transferrin is successfully labeled with $^{99m}Tc$, and its labeling efficiency was higher than 95% and stable for 8 hours. $^{99m}Tc$-Transferrin scintigraphy showed higher image quality in shorter time compared to $^{67}Ga$-citrate image. $^{99m}Tc$-transferrin is supposed to be useful in the detection of the infectious foci.

Dissemination of Bacillus Subtilis by using Bee-vectoring Technology in Cherry Tomato Greenhouses (방울토마토 시설재배에서 비벡터링(bee-vectoring) 기술을 이용한 Bacillus Subtilis 포장내 전파)

  • Park, Hong-Hyun;Kim, Jeong Jun;Kim, Kwang-Ho;Lee, Sang-Guei
    • Korean journal of applied entomology
    • /
    • v.52 no.4
    • /
    • pp.357-364
    • /
    • 2013
  • Bee-vectoring is a new crop protection technology used for suppressing insect pests and diseases in crops by disseminating microbial agents into plants during bee pollination activities. In this study, we conducted bee-vectoring trials in cherry tomato greenhouses by using the bumble bee (Bombus terrestris), a microbial agent (Bacillus subtilis) and a new dispenser, and we measured the delivered quantity of microbial agent. Bacterial colony forming units (CFUs) in bees exiting a dispenser ranged from $9.0{\times}10^5$ to $1.9{\times}10^6$ per bee. At greenhouse trials in the National Academy of Agricultural Science (NAAS) trials, 3,300 - 8,500 CFUs per flower were counted and 80 - 100% of the flower samples contained detectable concentrations. There was no significant difference in CFU density between microbial replacement intervals (once a week vs twice a week) in the NAAS trials. In a commercial greenhouse trial, 1,800 - 2,400 CFUs per flower were found, and 83 - 93% of the flower samples contained detectable concentrations. CFUs detected in bee-vectored flowers increased by approximately 75 times before bee-vectoring. The mortality of bumble bees in the NAAS trials was, on average, 22% and little negative effects were observed on the bumble bee colonies. The yield difference for cherry tomatoes in the NAAS trials was not significant between treatments. When we select additional microbial agents that can be disseminated using this technology and create a detailed plan based on insect pests and disease incidence, we can apply this technology in greenhouses for growing tomatoes and strawberries in the near future.

A Study on the Installation of Groyne using Critical Movement Velocity and Limiting Tractive Force (이동한계유속과 한계소류력을 활용한 수제 설치에 관한 연구)

  • Kim, Yeong Sik;Park, Shang Ho;An, Ik Tae;Choo, Yeon Moon
    • Journal of Wetlands Research
    • /
    • v.22 no.3
    • /
    • pp.194-199
    • /
    • 2020
  • Unlike in the past, the world is facing water shortages due to climate change and difficulties in simultaneously managing the risks of flooding. The Four Major Rivers project was carried out with the aim of realizing a powerful nation of water by managing water resources and fostering the water industry, and the construction period was relatively short compared to the unprecedented scale. Therefore, the prediction and analysis of how the river environment changes after the Four Major Rivers Project is insufficient. Currently, part of the construction section of the Four Major Rivers Project is caused by repeated erosion and sedimentation due to the effects of sandification caused by large dredging and flood-time reservoirs, and the head erosion of the tributaries occurs. In order to solve these problems, the riverbed maintenance work was installed, but it resulted in erosion of both sides of the river and the development of new approaches and techniques to keep the river bed stable, such as erosion and excessive sedimentation, is required. The water agent plays a role of securing a certain depth of water for the main stream by concentrating the flow so much in the center and preventing levee erosion by controlling the flow direction and flow velocity. In addition, Groyne products provide various ecological environments by forming a natural form of riverbeds by inducing local erosion and deposition in addition to the protection functions of the river bank and embankment. Therefore, after reviewing the method of determining the shape of the Groyne structure currently in use by utilizing the mobile limit flow rate and marginal reflux force, a new Critical Movement Velocity(${\bar{U}}_d$) and a new resistance coefficient formula considering the mathematical factors applicable to the actual domestic stream were developed and the measures applicable to Groyne installation were proposed.

Egg Antibody Farming and IgY Technology for Food and Biomedical Applications (식품과 생의학을 위한 계란 항체생산과 IgY 기술의 활용)

  • Sim, Jeong S.;Sunwoo, Hoon H.
    • Proceedings of the Korea Society of Poultry Science Conference
    • /
    • 2003.07b
    • /
    • pp.37-54
    • /
    • 2003
  • It has been recognized that the hen. like its mammalian counterparts. provides young chicks with antibodies as protection against hostile invaders. This system facilitates the transfer of specific antibodies from serum to egg yolk. and provides a supply of antibodies called immunoglobulin Y(IgY) to the developing embryo and the hatched chick. The protection against pathogens that the relatively immuno-incompetent newly hatched chick has. is through transmission of antibodies from the mother via the egg. Egg yolk. therefore. can be loaded with a large amount of IgY against pathogens which can immobilize the existing or invading pathogens during the embryo development or in day-old chicks. Thus. the immunization of laying hens to various pathogens results in production of different antigen-specific IgY in eggs. Egg yolk contains 8~20 mg of immunoglobulins (IgY) per $m\ell$ or 136~340 mg per yolk suggesting that more than 30 g of IgY can be obtained from one immunized hen in a year. By immunizing laying hens with antigens and collecting IgY from egg yolk. low cost antibodies at less than $10 per g compared to more than $20.000 per g of mammalian IgG can be obtained. This IgY technology opens new potential market applications in medicine. public health veterinary medicine and food safety. A broader use of IgY technology could be applied as biological or diagnostic tool. nut-raceutical or functional food development. oral-supplementation for prophylaxis. and as pathogen-specific antimicrobial agents for infectious disease control. This paper has emphasized that when IgY-loaded chicken eggs are produced and consumed. the specific antibody binds. immobilizes and consequently reduces or inhibits the growth or colony forming abilities of microbial pathogens. This concept could serve as an alternative agent to replace the use of antibiotics. since today. more and more antibiotics are less effective in the treatment of infections. due to the emergence of drug-resistant bacteria.

  • PDF

Inhibitory Effects of Prunus mume Solvent Fractions on Human Colon Cancer Cells (매실 분획물에 의한 인체 대장암세포 억제 효과)

  • Kim, Jeong-Ho;Cho, Hyun-Dong;Won, Yeong-Seon;Heo, Ji-An;Kim, Ji-Young;Kim, Hwi-Gon;Han, Sim-Hee;Moon, Kwang-Deog;Seo, Kwon-Il
    • Journal of Life Science
    • /
    • v.29 no.11
    • /
    • pp.1227-1234
    • /
    • 2019
  • Prunus mume, also known as maesil, is a popular fruit consumed in East Asia (Korea, Japan, and China). It contains high amounts of organic acids, minerals, and polyphenols and has been used as a medication for fever, vomiting, and detoxification. In this study, the anti-proliferative and apoptotic effects of solvent fractions from maesil were evaluated using sulforhodamine B (SRB) assays, morphological evaluations, Hoechst 33258 staining, and western blotting. Addition of the maesil methanol fraction (MMF) and the maesil butanol fraction (MBF) significantly and dose-dependently decreased the cell viability of HT-29 human colon cancer cells. Colony-forming assays confirmed that the MMF and MBF treatments decreased colony numbers when compared with untreated control cells. Treatment of HT-29 cells with MMF and MBF caused a distortion of the cell morphology to a shrunken cell mass. Treatment with MMF and MBF also dose-dependently increased nuclear condensation and the formation of apoptotic bodies in HT-29 cells. Treatment with MMF and MBF significantly and dosedependently increased the expression of Bax (a pro-apoptotic protein), caspase-3, and poly ADP-ribose polymerase (PARP) and decreased the expression of Bcl-2 (an anti-apoptotic protein). MMF significantly and dose-dependently inhibited cell proliferation induced by bisphenol A, an environmental hormone. Therefore, MMF may have potential use as a functional food and as a possible therapeutic agent for the prevention of colon cancer.

Effect of Cardanol Content on the Antibacterial Films Derived from Alginate-PVA Blended Matrix (알지네이트-폴리비닐알콜 블랜드 항균 필름 제조를 위한 카다놀 함량의 영향)

  • Ahn, Hee Ju;Kang, Kyung Soo;Song, Yun Ha;Lee, Da Hae;Kim, Mun Ho;Lee, Jae Kyoung;Woo, Hee Chul
    • Clean Technology
    • /
    • v.28 no.1
    • /
    • pp.24-31
    • /
    • 2022
  • Petroleum-based plastics are used for various purposes and pose a significant threat to the earth's environment and ecosystem. Many efforts have been taken globally in different areas to find alternatives. As part of these efforts, this study manufactured alginate-based polyvinyl alcohol (PVA) blended films by casting from an aqueous solution prepared by mixing 10 wt% petroleum-based PVA with biodegradable, marine biomass-derived alginate. Glutaraldehyde was used as a cross-linking agent, and cardanol, an alkyl phenol-based bio-oil extracted from cashew nut shell, was added in the range of 0.1 to 2.0 wt% to grant antibacterial activity to the films. FTIR and TGA were performed to characterize the manufactured blended films, and the tensile strength, degree of swelling, and antibacterial activity were measured. Results obtained from the FTIR, TGA, and tensile strength test showed that alginate, the main component, was well distributed in the PVA by forming a matrix phase. The brittleness of alginate, a known weakness as a single component, and the low thermal durability of PVA were improved by cross-linking and hydrogen bonding of the functional groups between alginate and PVA. Addition of cardanol to the alginate-based PVA blend significantly improved the antibacterial activity against S. aureus and E. coli. The antibacterial performance was excellent with a death rate of 98% or higher for S. aureus and about 70% for E. coli at a contact time of 60 minutes. The optimal antibacterial activity of the alginate-PVA blended films was found with a cardanol content range between 0.1 to 0.5 wt%. These results show that cardanol-containing alginate-PVA blended films are suitable for use as various antibacterial materials, including as food packaging.