Browse > Article
http://dx.doi.org/10.5656/KSAE.2013.10.0.055

Dissemination of Bacillus Subtilis by using Bee-vectoring Technology in Cherry Tomato Greenhouses  

Park, Hong-Hyun (Crop Protection Division, Department of Crop Life Safety, National Academy of Agricultural Science)
Kim, Jeong Jun (Agricultural Microbiology Division, Department of Agricultural Biology, National Academy of Agricultural Science)
Kim, Kwang-Ho (Crop Protection Division, Department of Crop Life Safety, National Academy of Agricultural Science)
Lee, Sang-Guei (Crop Protection Division, Department of Crop Life Safety, National Academy of Agricultural Science)
Publication Information
Korean journal of applied entomology / v.52, no.4, 2013 , pp. 357-364 More about this Journal
Abstract
Bee-vectoring is a new crop protection technology used for suppressing insect pests and diseases in crops by disseminating microbial agents into plants during bee pollination activities. In this study, we conducted bee-vectoring trials in cherry tomato greenhouses by using the bumble bee (Bombus terrestris), a microbial agent (Bacillus subtilis) and a new dispenser, and we measured the delivered quantity of microbial agent. Bacterial colony forming units (CFUs) in bees exiting a dispenser ranged from $9.0{\times}10^5$ to $1.9{\times}10^6$ per bee. At greenhouse trials in the National Academy of Agricultural Science (NAAS) trials, 3,300 - 8,500 CFUs per flower were counted and 80 - 100% of the flower samples contained detectable concentrations. There was no significant difference in CFU density between microbial replacement intervals (once a week vs twice a week) in the NAAS trials. In a commercial greenhouse trial, 1,800 - 2,400 CFUs per flower were found, and 83 - 93% of the flower samples contained detectable concentrations. CFUs detected in bee-vectored flowers increased by approximately 75 times before bee-vectoring. The mortality of bumble bees in the NAAS trials was, on average, 22% and little negative effects were observed on the bumble bee colonies. The yield difference for cherry tomatoes in the NAAS trials was not significant between treatments. When we select additional microbial agents that can be disseminated using this technology and create a detailed plan based on insect pests and disease incidence, we can apply this technology in greenhouses for growing tomatoes and strawberries in the near future.
Keywords
Bee vectoring; Bombus terrestris; Bacillus subtilis; Cherry tomato;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Al-mazra'awi, M., Shipp, J.L., Broadbent, B., P. Kevan, P., 2006a. Biological control of Lygus lineolaris (Hemiptera: Miridae) and Frankliniella occidentalis (Thysanoptera: Thripidae) by Bombus impatiens (Hymenoptera: Apidae) vectored Beauveria bassiana in greenhouse sweet pepper. Biol. Control 37, 89-97.   DOI   ScienceOn
2 Al-mazra'awi, M.S., Shipp, L., Broadbent, B., Kevan, P., 2006b. Dissemination of Beauveria bassiana by honey bees (Hymenoptera: Apidae) for control of tarnished plant bug (Hemiptera: Miridae) on canola. Environ. Entomol. 35, 1569-1577.   DOI   ScienceOn
3 Al-mazra'awi, M.S., Kevan, P.G., Shipp, L., 2007. Development of Beauveria bassiana dry formulation for vectoring by honey bees Apis mellifera (Hymenoptera: Apidae) to the flowers of crops pest control. Biocontrol Sci. Techn. 17, 733-741.   DOI   ScienceOn
4 Dimou, M., Taraza, S., Thrasyvoulou, A., Vasilakakis, M., 2008. Effect of bumble bee pollination on greenhouse strawberry production. J. Apicult. Res. 47, 99-101.
5 Kapongo, J.P., Shipp, L., Kevan, P., Broadbent, B., 2008a. Optimal concentration of Beauveria bassiana vectored by bumble bees in relation to pest and bee mortality in greenhouse tomato and sweet pepper. BioControl 53, 797-812.   DOI
6 Turner, J.T., Backman, P.A., 1991. Factors relating to peanut yield increases after seed treatment with Bacillus subtilis. Plant Dis. 75, 347-353.   DOI
7 Yoon, H.J., Kim, M.A., Lee, S.B., Han, S.M., Kim. W.T., 2007. Understanding bumblebees. National Institute of Agricultural Science and Technology, RDA, Rep. of Korea. 76pp.
8 Yoon, H.J., Kim, J.Y., Lee, K.Y., Lee, S.B., Park, I.G., Noh, S.K., 2008. Comparision of the colony development of the bumblebees, Bombus terrestris produced from domestic ad foreign bumblebees companies. Korean J. Appl. Entomol. 47, 95-100.   DOI   ScienceOn
9 Yu, H., Sutton, J.C., 1997. Effectiveness of bumblebees and honeybees for delivering inoculum of Gliocladium roseum to raspberry flowers to control Botrytis cinerea. Biol. Control 10, 113-122.   DOI   ScienceOn
10 Kapongo, J.P., Shipp, L., Kevan, P., Sutton, J.C., 2008b. Co-vectoring of Beauveria bassiana and Clonostachys rosea by bumble bees (Bombus impatiens) for control of insect pests and suppression of grey mould in greenhouse tomato and sweet pepper. Biol. Control 46, 508-514.   DOI   ScienceOn
11 Kevan, P.G., Straver, W.A., Offer, M., and Laverty, T.M., 1991. Pollination of greenhouse tomatoes by bumble bees in Ontario. Proc. Ent. Soc. Ontario 122, 15-19.
12 Kevan, P.G., Kapongo, J.P., Al-mazra'awi, M., Shipp, L., 2008. Honey bees, bumble bees, and biocontrol. In: James, R.R., Pitts-Singer, T.L. (Eds.), Bee pollination in agricultural ecosystems. Oxford university press. pp. 65-79.
13 Kevan, P.G., Cooper, E., Morse, A., Kapongo, J.P., Shipp, L., Kholsa, S., 2009. Measuring foraging activity in bumblebee nests: a simple nest-entrance trip recorder. J. Appl. Entomol. 133, 222-228.   DOI   ScienceOn
14 Korea Crop Protection Association (KCPA), 2011. Agro-Pesticide user guide. SamJung Press. 1311pp.
15 Loose, J.L., Drummond, F.A., Stubbs, C., Woods, S., Hoffmann, S., 2005. Conservation and management of native bees in cranberry. Maine agricultural and forest experimental station technical bulletin # 191, University of Maine, Orono, ME.
16 Mommaerts, V., Put, K., Vandeven, J., Jans, K., Sterk, G., Hoffman, L., Smagghe, G., 2010a. Development of a new dispenser for microbiological control agents and evaluation of dissemination by bumblebees in greenhous strawberries. Pest Manag. Sci. 66, 1199-1207.   DOI   ScienceOn
17 Mommaerts, V., Sterk, G., Hoffmann, L., Smagghe, G., 2010b. A laboratory evaluation to determine the compatibility of microbiological control agents with the pollinator Bombus terrestris. Pest Manag. Sci. 65, 949-955.
18 Morandin, L.A., Laverty, T.M., Kevan, P.G., Khosla, S., Shipp, L., 2001. Bumble bee (Hymenoptera: Apidae) activity and loss in commercial tomato greenhouses. Can. Entomol. 133, 883-893.   DOI
19 Mommaerts, V., Put, K., Smagghe, G., 2011. Bombus terrestris as pollinator and vector to suppress Botrytis cinerea in greenhouse strawberry. Pest Manag. Sci. 67, 1069-1075.
20 Mommaerts, V., Smagghe, G., 2011. Entomovectoring in plant protection. Arthropod-Plant Inte. 5, 81-95.   DOI
21 Park, H.H., Kim, J.J., Mustafa, G., Shipp, L., 2011. Crop protection using entomopathogenic microbials and bee-vectoring technology in Korea. Proceedings of Korean Applied Entomology for 2011 fall meeting. p 3.
22 Peng, G., Sutton, J.C., Kevan, P.G., 1992. Effectiveness of honeybees for applying the biocontrol agent Gliocladium rosea to strawberry flowers to suppress Botrytis cinerea. Can. J. Plant Pathol. 14, 117-129.   DOI
23 Serrano, A.R., Guerra-Sanz, J.M., 2006. Quality fruit improvement in sweet pepper culture by bumblebee pollination. Sci. Hortic. 110, 160-166.   DOI   ScienceOn
24 Shipp, J.L., Whitfield, G.H., Papadopoulos, A.P., 1994. Effectiveness of the bumble bee, Bombus impatiens Cresson (Hymenoptera: Apidae), as a pollinator of greenhouse sweet pepper. Sci. Hortic. 57, 29-39.   DOI   ScienceOn
25 Shipp, L., Kapongo, J.P., Park, H.H., Kevan, P., 2012. Effect of bee-vectored Beauveria bassiana on greenhouse beneficials under greenhouse cage conditions. Biol. Control 63, 135-142.   DOI   ScienceOn
26 Sutton, J.C., Peng, G., 1993. Manipulation and vectoring of biocontrol organisms to manage foliage and fruit disease in cropping systems. Annu. Rev. Phytopathol. 31, 473-493.   DOI   ScienceOn