• Title/Summary/Keyword: formation dynamics

Search Result 465, Processing Time 0.027 seconds

nArgBP2 as a hub molecule in the etiology of various neuropsychiatric disorders

  • Lee, Sang-Eun;Chang, Sunghoe
    • BMB Reports
    • /
    • v.49 no.9
    • /
    • pp.457-458
    • /
    • 2016
  • Recent studies have strongly implicated postsynaptic scaffolding proteins such as SAPAP3 or Shank3 in the pathogenesis of various mood disorders, including autism spectrum disorder, bipolar disorder (BD), and obsessive-compulsive disorders. Neural Abelson-related gene-binding protein 2 (nArgBP2) was originally identified as a protein that interacts with SAPAP3 and Shank3. Recent study shows that the genetic deletion of nArgBP2 in mice leads to manic/bipolar-like behavior resembling symptoms of BD. However, the function of nArgBP2 at synapse, or its connection with the synaptic dysfunctions, is completely unknown. This study provides compelling evidence that nArgBP2 regulates the spine morphogenesis through the activation of Rac1/WAVE/PAK/cofilin pathway, and that its ablation causes a robust and selective inhibition of excitatory synapse formation, by controlling actin dynamics. Our results revealed the underlying mechanism for the synaptic dysfunction caused by nArgBP2 downregulation that associates with analogous human BD. Moreover, since nArgBP2 interacts with key proteins involved in various neuropsychiatric disorders, our finding implies that nArgBP2 could function as a hub linking various etiological factors of different mood disorders.

Numerical analysis of liquid flow characteristics according to the design parameters of a bubble jet microactuator (마이크로 엑츄에이터의 설계변수에 따른 유동특성 해석)

  • Ko, Sang-Cheol
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.7
    • /
    • pp.605-612
    • /
    • 2016
  • A numerical analysis was performed on the effect of the design parameters of a bubble jet type microactuator on its liquid flow characteristics. The numerical models included the ink flow from the reservoir, bubble formation and growth, ejection through the nozzle, and dynamics of the refilling process. Because the bubble behavior is a very important parameter for the overall actuator performance, the bubble growth and collapse phenomena in an open pool were simulated in the present study. The drop ejection and refill process were numerically predicted for various geometries of the nozzle, chamber, and restrictor of the bubble jet microactuator. The numerical results from varying the design parameters can help with predicting the performance and optimizing the design of a microactuator.

Three-dimensional Detoantion Wave Dynamics in a Circular Tube (원형 관 내부에서의 3차원 데토네이션 파의 동적모형)

  • Cho, Deok-Rae;Won, Soo-Hee;Shin, Jae-Ryul;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.3
    • /
    • pp.68-75
    • /
    • 2008
  • The three-dimensional structure of detonation wave propagating in a circular tube was investigated using a parallel computational code developed previously. A series of parametric study for a circular tube of a fixed diameter gave the formation mechanism of the detonation cell structures depending on pre-exponential factor, k. The unsteady results in three-dimension showed the mechanisms of two, three and four cell mode of detonation wave front structures. The detonation cell number was increased but cell width and length were decreased with increased pre-exponential factor k. In the all multi-cell mode, the detonation wave structure and smoked-foil records on the wall are made by the moving of transverse waves. The detonation wave front structures have the regular polygon and windmill shapes periodically.

Temperature Prediction of Al6061 Tube in Cryogenic Heat Treatment by CFD Analysis and Experimental Verification (CFD 해석을 이용한 Al6061 튜브의 극저온 열처리 시 소재의 온도 예측 및 실험적 검증)

  • Hwang, Seong-Jun;Ko, Dae-Hoon;Kim, Dong-Hwan;Kim, Byung-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1210-1216
    • /
    • 2011
  • The purpose of this study is to establish the analysis method for prediction of temperature during cryogenic heat treatment. Experimental cryogenic heat treatment is conducted to observe the phenomena such as boiling of fluid, ice layer on the material surface and to measure the temperature distribution of Al6061 tube. The CFD analysis considering the observed phenomena in the experiment is performed to predict the temperature distribution and convection heat transfer coefficient at each stage of cryogenic heat treatment, in which the boiling of fluid is considered as the multi-phase condition of vapour and liquid. The formation of ice layer on the tube surface is also modeled between material and fluid. The predicted results are in good agreement with the experimental ones. From the results, it is shown that the analysis method can predict the temperature distribution and convection heat transfer coefficient during cryogenic heat treatment.

The Performance Test of SCR System in a Heavy-Duty Diesel Engine (대형디젤기관에 적용된 선택적 환원촉매장치 성능시험에 관한 연구)

  • Baik, Doo-Sung;Lee, Seang-Wock
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.6
    • /
    • pp.19-25
    • /
    • 2008
  • Selective Catalytic Reduction is effective in the reduction of NOx emission. This research focused to evaluate the performance of a urea-SCR system and was conducted in two procedures. One is SCR reactor test using model gas in order to provide an optimal injection condition itself. In this step, some parametric study on emission temperature, space velocity, aspect ratio and the formation of urea spray were made by using flow visualization and Computation Fluid Dynamics techniques. The basic simulation results contributed in determining the layout for an actual engine test. The other is an engine performance and emission test. The urea injector was placed at the opposite direction of exhaust gases emitted into an exhaust duct and an optimal amount of a reducing agent is estimated accurately under different engine loads and speeds. Furthermore, the variation of NOx emission and applied amount of urea was investigated in terms of modes under the condition of with and without SCR, and other emissions such as PM, CO and NMHC were evaluated quantitatively as well. This research may provide fundamental data for the practical use of urea-SCR in future.

INWARD MOTIONS IN STARLESS CORES TRACED WITH CS (3-2) and (2-1) LINES

  • LEE CHANG WON;MYERS PHILIP C.;PLUME RENE
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.257-259
    • /
    • 2004
  • We compare the results of the surveys of starless cores performed with CS (2-1) and (3-2) lines to study inward motions in the cores. The velocity shifts of the CS(3-2) and (2-1) lines with respect to $N_2H^+$ are found to correlate well with each other and to have similar number distributions, implying that, in many cores, systematic inward motions of gaseous material may occur over a range of density of at least a factor ${\~}$4. Fits of the CS spectra to a 2-layer radiative transfer model in ten infall candidates suggest that the median effective line-of-sight speed of the inward-moving gas is ${\~}0.07 km\;s^{-l}$ for CS (3-2) and ${\~} 0.04 km\;s^{-l}$ for CS(2-1). Considering that the optical depth obtained from the fits is usually smaller in CS(3-2) than in (2-1) line, this may indicate that CS(3-2) usually traces inner, denser gas with greater inward motions than CS(2-1) implying that many of the infall candidates have faster infall toward the center. However, this conclusion may not be representative of all starless core infall candidates, due to the statistically small number analyzed here. Further line observations will be useful to test this conclusion.

HCN(1-0) OBSERVATIONS OF STARLESS CORES

  • SOHN J,;LEE C, W,;LEE H, M.;PARK Y.-S.;MYERS P. C.;LEE Y.;TAFALLA M.
    • Journal of The Korean Astronomical Society
    • /
    • v.37 no.4
    • /
    • pp.261-263
    • /
    • 2004
  • We present a progress report on HCN(1-0) line observations toward starless cores to probe inward motions. We have made a single pointing survey toward the central regions of 85 starless cores and performed mapping observations of 6 infall candidate starless cores. The distributions of the velocity difference between HCN(1-0) hyperfine lines and the optically thin tracer $N_2H^+$(1-0) are significantly skewed to the blue, meaning that HCN(1-0) frequently detects inward motions. Their skewness to the blue is even greater than that of CS(2-1) Lee et al., possibly implying more infall occurrence than CS(1-0). We identify 19 infall candidates by using several characteristics illustrating spectral infall asymmetry seen in HCN(1-0) hyperfine lines, CS(3-2), CS(2-1), $DCO^+(2-1)$ and $N_2H^+$ observations. The HCN(1-0) F(O-l) with the least optical depth usually shows a similar intensity distribution to that of $N_2H^+$ which closely traces the density distribution of the cores, indicating that HCN(1-0) is less chemically affected and so believed to reflect kinematics occurring in rather inner regions of the cores. Detailed radiative transfer model fits of the spectra are underway to analyze central infall kinematics in starless cores.

Estimation the Natural Output Korea: A Bayesian DSGE Approach (한국의 자연 산출량 추정: 베이지안 DSGE 접근법)

  • Hwang, Youngjin
    • KDI Journal of Economic Policy
    • /
    • v.31 no.1
    • /
    • pp.1-25
    • /
    • 2009
  • This paper attempts to estimate the natural rates of output and interest of Korea in a simple DSGE set-up with a few stylized New Keynesian features using Bayesian methods. The major findings of this paper are as follows. First, the estimates of output gaps are less volatile than the measures from conventional approaches, although they exhibit non-negligible variations depending on the model specification. Another key finding is that the hybrid type Phillips curve with a backward-looking component and/or habit formation in consumption may play an important role in characterizing the macroeconomic dynamics of Korea.

  • PDF

CFD simulation of compressible two-phase sloshing flow in a LNG tank

  • Chen, Hamn-Ching
    • Ocean Systems Engineering
    • /
    • v.1 no.1
    • /
    • pp.31-57
    • /
    • 2011
  • Impact pressure due to sloshing is of great concern for the ship owners, designers and builders of the LNG carriers regarding the safety of LNG containment system and hull structure. Sloshing of LNG in partially filled tank has been an active area of research with numerous experimental and numerical investigations over the past decade. In order to accurately predict the sloshing impact load, a new numerical method was developed for accurate resolution of violent sloshing flow inside a three-dimensional LNG tank including wave breaking, jet formation, gas entrapping and liquid-gas interaction. The sloshing flow inside a membrane-type LNG tank is simulated numerically using the Finite-Analytic Navier-Stokes (FANS) method. The governing equations for two-phase air and water flows are formulated in curvilinear coordinate system and discretized using the finite-analytic method on a non-staggered grid. Simulations were performed for LNG tank in transverse and longitudinal motions including horizontal, vertical, and rotational motions. The predicted impact pressures were compared with the corresponding experimental data. The validation results clearly illustrate the capability of the present two-phase FANS method for accurate prediction of impact pressure in sloshing LNG tank including violent free surface motion, three-dimensional instability and air trapping effects.

Synthesis and Surface Relief Gratings of Three-Armed Star-Shaped Molecules Bearing 4-(N,N-Diphenyl)Amino-4'-Nitroazobenzene Chromophores

  • Lee, Jung-Eun;Jung, Kyung-Moon;Cho, Min-Ju;Kim, Kyung-Hwan;Choi, Dong-Hoon
    • Macromolecular Research
    • /
    • v.16 no.5
    • /
    • pp.434-440
    • /
    • 2008
  • Three-armed, star-shaped molecules containing 4-(N,N-diphenyl)amino-4'-nitroazobenzene chromophores were synthesized to study the diffraction behavior after inscribing surface relief gratings. The two molecules differed in terms of their mode of chromophore attachment to the core. In compound 5, they were bound to the core laterally through alkylene spacers, whereas the chromophores were tethered perpendicularly to the core in compound 4. Although 60 wt% of the polar azobenzene chromophores was comprised of large molecules, no aggregation behavior was observed in the absorption spectra of the thin films. The surface relief gratings were elaborated on the surface of the molecular films by the two-beam interference method. The dynamics of grating formation were studied in terms of the diffraction efficiency using two different film samples made up of two star-shaped molecules. The maximum diffraction efficiency of D-$(ENAZ)_3$, compound 4, was measured to be about 30%, which was significantly high. The mode of chromophore attachment affected the dynamic properties of the diffraction gratings.