• 제목/요약/키워드: formation: Galaxy

검색결과 446건 처리시간 0.022초

Clustering properties and halo occupation of Lyman-break galaxies at z ~ 4

  • Park, Jaehong;Kim, Han-Seek;Wyithe, Stuart B.;Lacey, Cedric G.;Baugh, Carlton M.
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.59.3-60
    • /
    • 2015
  • We investigate the clustering properties of Lyman-break galaxies (LBGs) at z ~ 4. Using the hierarchical galaxy formation model GALFORM, we predict the angular correlation function (ACF) of LBGs and compare this with the measured ACF from combined survey fields consisting of the Hubble eXtreme Deep Field (XDF) and CANDELS. We find that the predicted ACF is in a good agreement with the measured ACFs. However, when we divide the model LBGs into bright and faint subset, the predicted ACFs are less consistent with observations. We quantify the dependence of clustering on luminosity and show that the fraction of satellite LBGs is important for determining the amplitude of ACF at small scales. We find that central LBGs predominantly reside in ${\sim}10^{11}h^{-1}M_{solar}$ haloes and satellites reside in haloes of mass ${\sim}10^{12}-10^{13}h^{-1}M_{solar}$. The model predicts fewer bright satellite LBGs than is inferred from the observation. LBGs in the tails of the redshift distribution contribute significant additional clustering signal, especially on small scales. This spurious clustering may affect the interpretation of the halo occupation distribution, including the minimum halo mass and abundance of satellite LBGs.

  • PDF

DETECTION OF Hα EMISSION FROM z>3.5 GALAXIES WITH AKARI-FUHYU NIR SPECTROSCOPY

  • Sedgwick, Chris;Serjeant, Stephen;Pearson, Chris;Takagi, Toshinobu;Matsuhara, Hideo;Wada, Takehiko;Lee, Hyung Mok;Im, Myungshin;Jeong, Woong-Seob;Oyabu, Shinki;White, Glenn J.
    • 천문학논총
    • /
    • 제27권4호
    • /
    • pp.357-360
    • /
    • 2012
  • This paper presents $H{\alpha}$ emission line detections for four galaxies at z > 3.5 made with AKARI as part of the FUHYU mission program. These are the highest-redshift $H{\alpha}$ detections to date in star-forming galaxies. AKARI's unique near-infrared spectroscopic capability has made these detections possible. For two of these galaxies, this represents the first evidence of their redshifts and confirms their physical association with a companion radio galaxy. The star formation rates (SFRs) estimated from the $H{\alpha}$ lines under-predict the SFRs estimated from their far-infrared luminosities by a factor of ~ 2 - 3. We have also detected broad $H{\alpha}$ components in the two radio galaxies which indicate the presence of quasars.

LOW-LEVEL RADIO EMISSION FROM RADIO GALAXIES AND IMPLICATIONS FOR THE LARGE SCALE STRUCTURE

  • KRISHNA GOPAL;WIITA PAUL J.;BARAI PARAMITA
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.517-525
    • /
    • 2004
  • We present an update on our proposal that during the 'quasar era' (1.5 $\le$ z $\le$ 3), powerful radio galaxies could have played a major role in the enhanced global star-formation, and in the widespread magnetization and metal pollution of the universe. A key ingredient of this proposal is our estimate that the true cosmological evolution of the radio galaxy population is likely to be even steeper than what has been inferred from flux-limited samples of radio sources with redshift data, when an allowance is made for the inverse Compton losses on the cosmic microwave background which were much greater at higher redshifts. We thus estimate that a large fraction of the clumps of proto-galactic material within the cosmic web of filaments was probably impacted by the expanding lobes of radio galaxies during the quasar era. Some recently published observational evidence and simulations which provide support for this picture are pointed out. We also show that the inverse Compton x-ray emission from the population of radio galaxies during the quasar era, which we inferred to be largely missing from the derived radio luminosity function, is still only a small fraction of the observed soft x-ray background (XRB) and hence the limit imposed on this scenario by the XRB is not violated.

TURBULENCE PRODUCED BY TSUNAMIS IN GALAXY CLUSTERS

  • FUJITA YUTAKA;MATSUMOTO TOMOAKI;WADA KEIICHI
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.571-574
    • /
    • 2004
  • Clusters of galaxies are filled with X-ray emitted hot gas with the temperature of T ${\~}$2-10 keV. Recent X-ray observations have been revealing unexpectedly that many cluster cores have complicated, peculiar X-ray structures, which imply dynamical motion of the hot gas. Moreover, X-ray spectra indicate that radiative cooling of the cool gas is suppressed by unknown heating mechanisms (the 'cooling flow problem'). Here we propose a novel mechanism reproducing both the inhomogeneous structures and dynamics of the hot gas in the cluster cores, based on state-of-the-art hydrodynamic simulations. We showed that acoustic-gravity waves, which are naturally expected during the process of hierarchical structure formation of the universe, surge in the X-ray hot gas, causing a serous impact on the core. This reminds us of tsunamis on the ocean surging into an distant island. We found that the waves create fully-developed, stable turbulence, which reproduces the complicated structures in the core. Moreover, if the wave amplitude is large enough, they can suppress the cooling of the core. The turbulence could be detected in near-future space X-ray missions such as ASTRO-E2.

OPTICAL-NEAR INFRARED COLOR GRADIENTS OF ELLIPTICAL GALAXIES AND THEIR ENVIRONMENTAL DEPENDENCE

  • KO JONGWAN;IM MYUNGSHIN
    • 천문학회지
    • /
    • 제38권2호
    • /
    • pp.149-151
    • /
    • 2005
  • We have studied the environmental effect on optical-NIR color gradients of 273 nearby elliptical galaxies. Color gradient is a good tool to study the evolutionary history of elliptical galaxies, since the steepness of the color gradient reflects merging history of early types. When an elliptical galaxy goes through many merging events, the color gradient can be get less steep or reversed due to mixing of stars. One simple way to measure color gradient is to compare half-light radii in different bands. We have compared the optical and near infrared half-light radii of 273 early-type galaxies from Pahre (1999). Not surprisingly, we find that $r_e(V)s$ (half-light radii measured in V-band) are in general larger than $r_e(K)s$ (half-light radii measured in K-band). However, when divided into different environments, we find that elliptical galaxies in the denser environment have gentler color gradients than those in the less dense environment. Our finding suggests that elliptical galaxies in the dense environment have undergone many merging events and the mixing of stars through the merging have created the gentle color gradients.

Morphology-Dependent Evolution of Galaxies in Mid-infrared Green Valley

  • 이광호;이명균;손주비
    • 천문학회보
    • /
    • 제39권2호
    • /
    • pp.48.1-48.1
    • /
    • 2014
  • We investigate the evolution of galaxies in mid-infrared (MIR) $[3.4{\mu}m]-[12{\mu}m]$ color versus $12{\mu}$ luminosity diagram using Wide-field Infrared Survey Explorer data for member galaxies of the A2199 supercluster at $z{\simeq}0.03$. In the MIR color-luminosity diagram, we classify galaxies into three MIR classes: MIR blue cloud (massive, quiescent and mostly early-type), MIR star-forming sequence (mostly late-type), and MIR green valley galaxies. Both MIR green valley galaxies and MIR blue cloud galaxies are optically red sequence populations, and there is no significant difference in star formation rates and stellar masses between them. We compare cumulative distribution functions of surface galaxy number density and of cluster/group-centric distance between three MIR classes. However, when considering only early-type galaxies, the difference between MIR blue cloud galaxies and MIR green valley galaxies disappears. In contrast, the intermediate trend of MIR green valley galaxies is still found for late-type galaxies. We discuss our results concerning the difference of evolution between early- and late-type galaxies and the connection to environment.

  • PDF

Magnetohydrodynamic Simulations of Barred Galaxies

  • 김웅태
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.38.2-38.2
    • /
    • 2012
  • We use two-dimensional high-resolution MHD simulations to investigate the effects of magnetic fields on the formation and evolution of such substructures as well as on the mass inflow rates to the galaxy center. We find that there exists an outermost x1-orbit relative to which gaseous responses to an imposed stellar bar potential are completely different between inside and outside. Inside this orbit, gas is shocked into dust lanes and infalls to form a nuclear ring. Magnetic fields are compressed in dust lanes, reducing their peak density. Magnetic stress removes further angular momentum of the gas at the shocks and leads to a smaller and more centrally distributed ring, resulting in the mass inflow rates larger, by more than two orders of magnitude, than in the unmagnetized counterparts. Outside the outermost x1-orbit, on the other hand, an MHD dynamo operates near the corotation and bar-end regions, efficiently amplifying magnetic fields. The amplified fields shape into trailing magnetic arms with strong fields and low density. The base of the magnetic arms have a thin layer in which magnetic fields with opposite polarity reconnect via a tearing-mode instability. This produces numerous magnetic islands with large density which propagate along the arms to turn the outer disk into a highly chaotic state.

  • PDF

AN OLD SUPERNOVA REMNANT WITHIN AN HII COMPLEX AT $1{\approx}173{\circ}$ : FVW172.8+1.5

  • 강지현;구본철
    • 천문학회보
    • /
    • 제37권1호
    • /
    • pp.72.2-72.2
    • /
    • 2012
  • We present the results of HI 21 cm line observations to explore the nature of the high-velocity (HV) HI gas at - 173${\circ}$, which appears as faint, wing-like, Hi emission that extends to velocities beyond those allowed by Galactic rotation in the low-resolution surveys. We designate this feature as Forbidden Velocity Wing (FVW) 172.8+1.5. Our high-resolution Arecibo HI observations show that FVW 172.8+1.5 is composed of knots, filaments, and ring-like structures distributed over an area of a few degrees in extent. These HV HI emission features are well correlated with the HII complex G173+1.5, which is composed of five Sharpless HII regions distributed along a radio continuum loop of size 4.4${\times}$3.4, or -138 pc ${\times}$ 107 pc, at a distance of 1.8 kpc. G173+1.5 is one of the largest star-forming regions in the outer Galaxy. The HV HI gas and the radio continuum loop seem to trace an expanding shell. Its derived HI parameters including large expansion velocity (55 km/s) imply the SNR interpretation. Hot xray emission is detected within the HII complex, which also supports its SNR origin. The FVW172.8+1.5 is most likely the products of a supernova explosion(s) within the HII complex, possibly in a cluster that triggered the formation of these HII regions.

  • PDF

Bar Fraction in Early-type and Late-type

  • Lee, Yun Hee;Ann, Hong Bae;Park, Myeong-Gu
    • 천문학회보
    • /
    • 제42권2호
    • /
    • pp.43.4-44
    • /
    • 2017
  • Bar fractions depend on the properties of host galaxies. However, the observational studies did not provide consistent tendency. We investigated the bar fractions and their dependence on properties of host galaxies using three bar classifications: visual inspection, ellipse fitting method and Fourier analysis from a volume-limited sample of 1,698 disk galaxies brighter than Mr=-15.2 within z = 0.01 from the Sloan Digital Sky Survey (SDSS) Data Release 7 (DR7). We found two causes to make the discrepancy in previous studies. One is caused by the difficulty in automatically identifying bars for bulge-dominated galaxies. In particular, ellipse fitting methods could miss early-type barred galaxies when a large bulge weakens the transition between a bar and disk. The other is caused by the difference in the correlation between the bar types and host morphology for strong bars and weak bars. Strong bars are preponderant in early-type spirals which are red, bulge-dominated and highly concentrated, whereas weak bars are frequent in late-type spirals which are blue, disk-dominate and less-concentrated. Therefore, how much weak bars they contain affects the trend of bar fraction on host galaxy properties. We also discuss the effect of host properties on the formation, evolution, and destruction of bars.

  • PDF

THE UNUSUAL STELLAR MASS FUNCTION OF STARBURST CLUSTERS

  • Dib, Sami
    • 천문학회지
    • /
    • 제40권4호
    • /
    • pp.157-160
    • /
    • 2007
  • I present a model to explain the mass segregation and shallow mass functions observed in the central parts of starburst stellar clusters. The model assumes that the initial pre-stellar cores mass function resulting from the turbulent fragmentation of the proto-cluster cloud is significantly altered by the cores coalescence before they collapse to form stars. With appropriate, yet realistic parameters, this model based on the competition between cores coalescence and collapse reproduces the mass spectra of the well studied Arches cluster. Namely, the slopes at the intermediate and high mass ends, as well as the peculiar bump observed at $6M_{\bigodot}$. This coalescence-collapse process occurs on a short timescale of the order of the free fall time of the proto-cluster cloud (i.e., a few $10^4$ years), suggesting that mass segregation in Arches and similar clusters is primordial. The best fitting model implies the total mass of the Arches cluster is $1.45{\times}10^5M_{\bigodot}$, which is slightly higher than the often quoted, but completeness affected, observational value of a few $10^4M_{\bigodot}$. The model implies a star formation efficiency of ${\sim}30$ percent which implies that the Arches cluster is likely to a gravitationally bound system.