DOI QR코드

DOI QR Code

LOW-LEVEL RADIO EMISSION FROM RADIO GALAXIES AND IMPLICATIONS FOR THE LARGE SCALE STRUCTURE

  • KRISHNA GOPAL (National Centre for Radio Astrophysics/TIFR, Post Bag 3, Pune University Campus) ;
  • WIITA PAUL J. (Department of Physics & Astronomy, Georgia State University) ;
  • BARAI PARAMITA (Department of Physics & Astronomy, Georgia State University)
  • Published : 2004.12.01

Abstract

We present an update on our proposal that during the 'quasar era' (1.5 $\le$ z $\le$ 3), powerful radio galaxies could have played a major role in the enhanced global star-formation, and in the widespread magnetization and metal pollution of the universe. A key ingredient of this proposal is our estimate that the true cosmological evolution of the radio galaxy population is likely to be even steeper than what has been inferred from flux-limited samples of radio sources with redshift data, when an allowance is made for the inverse Compton losses on the cosmic microwave background which were much greater at higher redshifts. We thus estimate that a large fraction of the clumps of proto-galactic material within the cosmic web of filaments was probably impacted by the expanding lobes of radio galaxies during the quasar era. Some recently published observational evidence and simulations which provide support for this picture are pointed out. We also show that the inverse Compton x-ray emission from the population of radio galaxies during the quasar era, which we inferred to be largely missing from the derived radio luminosity function, is still only a small fraction of the observed soft x-ray background (XRB) and hence the limit imposed on this scenario by the XRB is not violated.

Keywords

References

  1. Archibald, E. N., Dunlop, J. S., Hughes, D. H., Rawlings, S., Eales, S. A., & Ivison, R. J. 2001, MNRAS, 323, 417 https://doi.org/10.1046/j.1365-8711.2001.04188.x
  2. Barai, P., Gopal-Krishna, Osterman, M. A., & Wiita, P. J. 2004, BASI, submitted
  3. Barger, A. J., et al. 2001, AJ, 122, 2177 https://doi.org/10.1086/323454
  4. Begelman, M. C., & Cioffi, D. F. 1989, ApJ, 345, L21 https://doi.org/10.1086/185542
  5. Best, P. N., Longair, M. S., & R$\ddot{o}$ttgering, H. J. A. 1996 MNRAS, 280, L9 https://doi.org/10.1093/mnras/280.1.L9
  6. Bicknell, G. V., & Begelman, M.C., 1996, ApJ, 467, 597 https://doi.org/10.1086/177636
  7. Bickneell, G. V., Sutherland, R. S., van Breugel, W. J. M., Doplta, M. A., Dey, A., & Miley, G. K. 2000 ApJ 540, 678 https://doi.org/10.1086/309343
  8. Blundell, K. M., Rawlings, S., & Willott, C. J. 1999, AJ, 117, 677 (BRW) https://doi.org/10.1086/300721
  9. Bode, P., Bahcall, N.A., Ford, E.B., & Ostriker, J.P. 2001, ApJ, 556, 93 https://doi.org/10.1086/321541
  10. Celotti, A., & Fabian, A. C. 2004, MNRAS, 353, 523 https://doi.org/10.1111/j.1365-2966.2004.08085.x
  11. Cen, R, & Ostriker, .J. P. 1999, ApJ, 514, 1 https://doi.org/10.1086/306949
  12. Chambers, K. C., Miley, G. K., & van Breugel, W. 1988, ApJ, 327, L47 https://doi.org/10.1086/185137
  13. Cimatti, A., et al. 2004, Nature, 430,· 184 https://doi.org/10.1038/nature02668
  14. Clewley, L., & Jarvis, M.J. 2004, MNRAS, 352, 909 https://doi.org/10.1111/j.1365-2966.2004.07981.x
  15. Daly, R. A., & Loeb, A. 1990, ApJ, 364, 451 https://doi.org/10.1086/169429
  16. Dav$\acute{e}$, R, et al. 2001, ApJ, 552, 473 https://doi.org/10.1086/320548
  17. Dey, A., van Breugel, W., Vacca, W.D., & Antonucci, R. 1997, ApJ, 490, 698 https://doi.org/10.1086/304911
  18. Ellison, S.L., Songaila, A., Schaye, .J., & Pettini, M. 2000, AJ, 120, 1175 https://doi.org/10.1086/301511
  19. Fabian, A.C., Crawford, C.S., Ettori, S., & Sanders, J.S. 2001, MNRAS, 332, L11
  20. Falle, S.A.E.G. 1991, MNRAS, 250, 581 https://doi.org/10.1093/mnras/250.3.581
  21. Ferrara, A., Pettini, M., Shchekinov, Y. 2000, MNRAS, 319, 539 https://doi.org/10.1046/j.1365-8711.2000.03857.x
  22. Fragile, P. C., Murray, S. D., Annios, P., & van Breugel, W. 2004a, ApJ, 604, 74 https://doi.org/10.1086/381726
  23. Fragile, P. C., Annios, P., Gustafson, K., & Murray, S. D., 2004b, ApJ, in press (astro-ph/0410285)
  24. Furlanetto, S. R & Loeb, A. 2001, ApJ, 556, 619 https://doi.org/10.1086/321630
  25. Glazebrook, K. et al. 2004, Nature 430, 181 https://doi.org/10.1038/nature02667
  26. Gnedin, N. Y 1998, MNRAS, 294, 407 https://doi.org/10.1046/j.1365-8711.1998.01156.x
  27. Gnedin, N. Y, & Ostriker, J.P. 1997, ApJ, 487, 667 https://doi.org/10.1086/304646
  28. Gopal-Krishna & Wiita, P. J. 2001, ApJ, 560, L115 (GKW01) https://doi.org/10.1086/324310
  29. Gopal-Krishna & Wiita, P. J. 2003, in Radio Astronomy at the Fringe, ed. J.A. Zensus, M.H. Cohen, & E. Ros (San Francisco: ASP) Vol. 300, p. 293 (GKW03)
  30. Gopal-Krishna, Wiita, P. J., & Osterman, M. A. 2003, in Active Galactic Nuclei: from Central Engine to Host Galaxy, ed. S. Collin, F. Combes, & I. Shlosman (San Francisco: ASP), Vol. 290, p. 319 (GKWO)
  31. Gopal-Krishna, Wiita, P. J., & Saripalli, L. 1989, MNRAS, 239, 173 https://doi.org/10.1093/mnras/239.1.173
  32. Grimes, .J., Rawlings, S., & Willott, C. J., 2004, MNRAS, 349, 503 https://doi.org/10.1111/j.1365-2966.2004.07510.x
  33. Hasinger, G. 2002, in Lighthouses of the Universe: The Most Luminous Celestial Objects and Their Use for Cosmology, (MPA/ESO), p. 555
  34. Heavens, A., Panter, B., Jimenez, R., & Dunlop, J., 2004, Nature, 428, 625 https://doi.org/10.1038/nature02474
  35. Hooda, J.S., & Wiita, P.J. 1998, ApJ, 493, 81 https://doi.org/10.1086/305099
  36. Ishwara-Chandra, C. H., & Saikia, D. J. 1999, MNRAS, 309, 100 https://doi.org/10.1046/j.1365-8711.1999.02835.x
  37. Kaiser, C. R, & Alexander, P. 1997, MNRAS, 286, 215 https://doi.org/10.1093/mnras/286.1.215
  38. Kaiser, C. R, Dennett-Thorpe, .J., & Alexander, P. 1997, MNRAS, 292, 723 (KDA) https://doi.org/10.1093/mnras/292.3.723
  39. Klamer, I.J., Ekers, R.D., Sadler, E.M., & Hunstead, R.W. 2004, ApJ, 612, L97 https://doi.org/10.1086/424843
  40. Kronberg, P. P., Lesch, H., & Hopp, U. 1999, ApJ, 511, 56 https://doi.org/10.1086/306662
  41. Kronberg, P. P., Dufton, Q. W., Li, H., & Colgate, S. 2001, ApJ, 560,178 https://doi.org/10.1086/322767
  42. Manolakou, K., & Kirk, J. G. 2002, A&A, :391, 127 (MK) https://doi.org/10.1051/0004-6361:20020780
  43. Marconi, A., Risaliti, G., Gilli, R., Hunt, L.K., Maiolino, R & Salvati, M. 2004, MNRAS, 351, 169 https://doi.org/10.1111/j.1365-2966.2004.07765.x
  44. McCarthy, P. J., van Breugel, W. .J. M., Spinrad, H., & Djorgovski, S. 1987, ApJ, 321, L29 https://doi.org/10.1086/185000
  45. McLure, R. .J., & Dunlop, J. S. 2004, MNRAS, 352, 1390 https://doi.org/10.1111/j.1365-2966.2004.08034.x
  46. McNamara, B.R. 2002, New Astr. Rev., 46, 141 https://doi.org/10.1016/S1387-6473(01)00169-5
  47. Mellema, G., Kurk, .J. D., & R$\ddot{o}$ttgering, H. J. A. 2002, A&A, 395, 13 https://doi.org/10.1051/0004-6361:20021408
  48. Miller, C. J., et al. 2003, ApJ, 597, 142M https://doi.org/10.1086/378383
  49. Miyaji, T., Hasinger, G., Schmidt, M. 2000, A&A, 353, 25
  50. Mulchaey, J.S., & Zabludoff, A.I., 1998, ApJ, 496, 73 https://doi.org/10.1086/305356
  51. Oosterloo, T.A., & Morganti, R. 2004, A&A, in press (astroph/0409500)
  52. Oren, A. L., & Wolfe, A. M. 1995, ApJ, 445, 624 https://doi.org/10.1086/175726
  53. Owen, F.N., Eilek, J.A., & Kassim, N.E. 2000, ApJ, 543, 611 https://doi.org/10.1086/317151
  54. Peng, B., Strom, R.G., Wei, J., & Zhao, Y.H. 2004, A&A, 415,487 https://doi.org/10.1051/0004-6361:20034363
  55. Pettini, M., et al. 2001, ApJ, 554, 981 https://doi.org/10.1086/321403
  56. Pinchon, C., Scannapieco, E., Aracil, B., Petitjean, P., Aubert, D., Bergeron, J., Colombi, S. 2003, ApJ, .597, L97 https://doi.org/10.1086/380087
  57. Rawlings, S., &. Jarvis, M.J. 2004, MNRAS, accepted(astro-ph/0409687)
  58. Rees, M. J. 1989, MNRAS, 239, 1P https://doi.org/10.1093/mnras/239.1.1
  59. Rees, M. .J. 1994, in Cosmical Magnetism, ed. D. Lynden-Bell (Dordrecht: Kluwer), p. 155
  60. Ryu, D., Kang, H., & Biermann, P. L. 1998, A&A, 335, 19
  61. Scannapieco, E, & Broadhurst, T, 2001, ApJ, 550, L39 https://doi.org/10.1086/319487
  62. Schaye, J., et al. 2000, ApJ, 541, L1 https://doi.org/10.1086/312892
  63. Shchekinov, Yu.A. 2002, A&A Transact., 21, 131
  64. Silverman, .J. et al. 2004, in in AGN Physics with the Sloan Digital Sky Survey, ed. G.T. Richards & P.B. Hall (San Francisco: ASP), Vol. 311, p. 321
  65. Songaila, A. 2001, ApJ, 561, L153 https://doi.org/10.1086/324761
  66. Steidel, C. C., Adelberger, K. L., Giavalisco, M., Dickinson, M., & Pettini, M. 1999, ApJ, 519, 1 https://doi.org/10.1086/307363
  67. Stevens, J .A., et al. 2003, Nature, 425, 264 https://doi.org/10.1038/nature01976
  68. Theuns, T., Viel, M., Kay, S., et aI., 2002, ApJ, 578, L5 https://doi.org/10.1086/344521
  69. Urry, C. M. 2004, in AGN Physics with the Sloan Digital Sky Survey, ed. G.T. Richards & P.B. Hall (San Francisco: ASP), Vol. 311, p. 49
  70. van Breugel, W. & Dey, A. 1993, ApJ, 414, 563 https://doi.org/10.1086/173103
  71. van Breugel, W., Filippenko, A.V., Heckman, T., & Miley, G. 1985, ApJ, 293, 83 https://doi.org/10.1086/163216
  72. Willott, C. J., Rawlings, S., Blundell, K. M., Lacy, M., & Eales, S. A. 2001, MNRAS, 322, 536 https://doi.org/10.1046/j.1365-8711.2001.04101.x
  73. Worsley, M. A., Fabian, A. C., Barcons, X., Mateos, S., Hasinger, G., & Brunner, H. 2004, MNRAS, 352, L28 https://doi.org/10.1111/j.1365-2966.2004.08142.x
  74. Zanni, C., Bodo, G., Rossi, P., Massaglia, S., Durbala, A., & Ferrari, A. 2003, A&A, 402, 949 https://doi.org/10.1051/0004-6361:20030302

Cited by

  1. Testing models of the individual and cosmological evolutions of powerful radio galaxies vol.372, pp.1, 2006, https://doi.org/10.1111/j.1365-2966.2006.10869.x
  2. ANISOTROPIC ACTIVE GALACTIC NUCLEUS OUTFLOWS AND ENRICHMENT OF THE INTERGALACTIC MEDIUM. II. METALLICITY vol.727, pp.1, 2011, https://doi.org/10.1088/0004-637X/727/1/54
  3. Distant radio galaxies and their environments vol.15, pp.2, 2008, https://doi.org/10.1007/s00159-007-0008-z
  4. Large-Scale Impact of the Cosmological Population of Expanding Radio Galaxies vol.682, pp.1, 2008, https://doi.org/10.1086/591029
  5. Ultraluminous starbursts from supermassive black hole-induced outflows vol.364, pp.4, 2005, https://doi.org/10.1111/j.1365-2966.2005.09672.x
  6. Superdiscs in radio galaxies: jet–wind interactions vol.380, pp.2, 2007, https://doi.org/10.1111/j.1365-2966.2007.12103.x