• Title/Summary/Keyword: form-accuracy

검색결과 1,360건 처리시간 0.027초

사례기반 추론과 인공신경망을 적용한 순환골재콘크리트 강도 추정에 관한 비교 연구 (A Study on the Prediction of Recycled Aggregate Concrete Strength Using Case-Based Reasoning and Artificial Neural Network)

  • 김대원;최희복;강경인
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2005년도 춘계 학술기술논문발표대회 논문집
    • /
    • pp.119-124
    • /
    • 2005
  • It is necessary for prediction of recycled aggregate concrete(RAC) strength at the early stage that facilitate concrete form removal and scheduling for construction. However, to predict RAC strength is difficult because of being influenced by complicated many factors. Therefore, this research suggest optimized estimation method that can reflect many factors. One way is Case-Based Reasoning(CBR) that solved new problems by adapting solutions to similar problems solved in the past, which are solved in the case library. Other way is Artificial Neural Networks(ANN) that solved new problems by training using a set of data, which is representative of problem domain. This study is to propose comparing accuracy of the estimating the compressive strength of recycled aggregate concrete using Case-Based Reasoning(CBR) and Artificial Neural Networks(ANN).

  • PDF

쾌속조형장치의 길이오차를 이용한 형상정밀도 개선에 관한 연구 (A Study on the Improvement of Form Accuracy Using the Length Strain of Rapid Prototype)

  • 김태호;박재덕;김민주;이승수;이준희;전언찬
    • 한국정밀공학회지
    • /
    • 제21권12호
    • /
    • pp.154-159
    • /
    • 2004
  • This study is aimed to diminish the errors which created during transforming from 3D shape created with CAD program to STL file formation. The length strain which created on X-Y axises at STL file transforming is diminished by using the relation between common shape error and shrinkage rate. As the result of study, we have confirmed the length strain in accordance with facetres value. Also, the shape error is compensated with shrinkage rate by error of length strain. so, we could diminish to shape error by several tens micrometer.

드릴링 자유도를 가진 매크로 삼각형 요소를 이용한 평면 응력 해석 (Construction of a macro plane stress triangle element with drilling d.o.f.'s)

  • 엄재성;김영태;이병채
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.886-889
    • /
    • 2004
  • A simple macro triangle with drilling d.o.f.'s is proposed for plane stress problems based on IET(Individual element test) and finite element template. Three-node triangular element has geometrical advantages in preprocessing but suffers from bad performance comparing to other shapes of elements -especially quadrilateral. Main purpose of this study is to construct a high-performance linear triangular element with limited supplementary d.o.f.'s. A triangle is divided by three sub-triangles with drilling d.o.f.'s. The sub-triangle stiffness come from IET passing force-lumping matrix, so this assures the consistency of the element. The macro element strategy takes care of the element‘s stability and accuracy like higher-order stiffness in the F.E. template. The resulting element fits on the uses of conventional three-node. Benchmark examples show proposed element in closed form stiffness from CAS (Computer algebra system) gives the improved results without more computational efforts than others.

  • PDF

Extension of Source Projection Analytic Nodal $S_N$ Method for Analysis of Hexagonal Assembly Cores

  • Kim, Tae-Hyeong;Cho, Nam-Zin
    • Nuclear Engineering and Technology
    • /
    • 제28권5호
    • /
    • pp.488-499
    • /
    • 1996
  • We have extended the source projection analytic nodal discrete ordinates method (SPANDOM) for more flexible applicability in analysis of hexagonal assembly cores. The method (SPANDOM-FH) does not invoke transverse integration but instead solves the discrete ordinates equation analytically after the source term is projected and represented in hybrid form of high-order polynomials and exponential functions. SPANDOM-FH which treats a hexagonal node as one node is applied to two fast reactor benchmark problems and compared with TWOHEX. The results of comparison indicate that the present method SPANDOM-FH predicts accurately $k_eff$ and flux distributions in hexagonal assembly cores. In addition, SPANDOM-FH gives the continuous two dimensional intranodal scalar flux distributions in a hexagonal node. The reentering models between TWOHEX and SPANDOM were also compared and it was confirmed that SPANDOM's model is more realistic. Through the results of benchmark problems, we conclude that SPANDOM-FH has the sufficient accuracy for the nuclear design of fast breeder reactor (FBR) cores with hexagonal assemblies.

  • PDF

신뢰성 해석을 위한 반도체 다중연결선의 RMS 전류 추정 기법 (RMS Current Estimation Technique for Reliability Analysis of Multiple Semiconductor Interconnects)

  • 김기영;김덕민;김석윤
    • 전기학회논문지
    • /
    • 제60권8호
    • /
    • pp.1547-1554
    • /
    • 2011
  • As process parameters scale, interconnect width are reduced rapidly while the current flowing through interconnects does not decrease in a proportional manner. This effect increases current density in metal interconnects which may result in poor reliability. Since RMS(root-mean-square) current limits are used to evaluate self-heating and short-time stress failures caused by high-current pluses, RMS current estimation is very important to guarantee the reliability of semiconductor systems. Hence, it is critical to estimate the current limits through interconnects earlier in semiconductor design stages. The purpose of this paper is to propose a fast, yet accurate RMS current estimation technique that can offer a relatively precise estimate by using closed-form equations. The efficiency and accuracy of the proposed method have been verified through simulations using HSPICE for a vast range of interconnect parameters.

Phasor Estimation Algorithm Based on the Least Square Technique during CT Saturation

  • Lee, Dong-Gyu;Kang, Sang-Hee;Nam, Soon-Ryul
    • Journal of Electrical Engineering and Technology
    • /
    • 제6권4호
    • /
    • pp.459-465
    • /
    • 2011
  • A phasor estimation algorithm based on the least square curve fitting technique for the distorted secondary current due to current transformer (CT) saturation is proposed. The mathematical form of the secondary current during CT saturation is represented as the scaled primary current with magnetizing current. The information on the scaled primary current is estimated using the least square technique, with the measured secondary current in the saturated section. The proposed method can estimate the phasor of a fundamental frequency component during the saturated period. The performance of the algorithm is validated under various fault and CT conditions using a C400 CT model. A series of performance evaluations shows that the proposed phasor estimation algorithm can estimate the phasor of the fundamental frequency component with high accuracy, regardless of fault conditions and CT characteristics.

Secure Biometric Hashing by Random Fusion of Global and Local Features

  • Ou, Yang;Rhee, Kyung-Hyune
    • 한국멀티미디어학회논문지
    • /
    • 제13권6호
    • /
    • pp.875-883
    • /
    • 2010
  • In this paper, we present a secure biometric hashing scheme for face recognition by random fusion of global and local features. The Fourier-Mellin transform and Radon transform are adopted respectively to form specialized representation of global and local features, due to their invariance to geometric operations. The final biometric hash is securely generated by random weighting sum of both feature sets. A fourfold key is involved in our algorithm to ensure the security and privacy of biometric templates. The proposed biometric hash can be revocable and replaced by using a new key. Moreover, the attacker cannot obtain any information about the original biometric template without knowing the secret key. The experimental results confirm that our scheme has a satisfactory accuracy performance in terms of EER.

항만과 지역경제간의 동태적 모델에 관한 연구 (A Study on Dynamic Models for Ports and Regional Economy)

  • 오세용;여기태;이철영
    • 한국항해항만학회:학술대회논문집
    • /
    • 한국항해항만학회 2000년도 추계학술대회논문집
    • /
    • pp.15-23
    • /
    • 2000
  • If a system such as a port and regional economy has a large boundary and complexity, the system's substance is considered as a black box, forecast accuracy will be very low. Futhermore various components in a port and regional economy exert significant influence on each other. To copy with these problem the form of structure models were introduced by using SD model. This study has the issue of simplifying the regional economic effects of the port as contributing to raising the regional income. The regional economic effects of port have various indirect ones except for this. So, SD(System Dynamics) was presented, and applied to simulate port and regional economy.

  • PDF

A Rao-Robson Chi-Square Test for Multivariate Normality Based on the Mahalanobis Distances

  • Park, Cheolyong
    • Communications for Statistical Applications and Methods
    • /
    • 제7권2호
    • /
    • pp.385-392
    • /
    • 2000
  • Many tests for multivariate normality are based on the spherical coordinates of the scaled residuals of multivariate observations. Moore and Stubblebine's (1981) Pearson chi-square test is based on the radii of the scaled residuals, or equivalently the sample Mahalanobis distances of the observations from the sample mean vector. The chi-square statistic does not have a limiting chi-square distribution since the unknown parameters are estimated from ungrouped data. We will derive a simple closed form of the Rao-Robson chi-square test statistic and provide a self-contained proof that it has a limiting chi-square distribution. We then provide an illustrative example of application to a real data with a simulation study to show the accuracy in finite sample of the limiting distribution.

  • PDF

전산공력음향학을 위한 적응형 비선형 인공감쇄모형 (Adaptive Nonlinear Artificial Dissipation Model for Computational Aeroacoustics)

  • 김재욱;이덕주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2001년도 추계 학술대회논문집
    • /
    • pp.11-19
    • /
    • 2001
  • An adaptive nonlinear artificial dissipation model is presented for performing aeroacoustic computations by the high-order and high-resolution numerical schemes based on the central finite differences. An effective formalism of it is devised by combining a selective background smoothing term and a well-established nonlinear shock-capturing term which is for the temporal accuracy as well as the numerical stability. A conservative form of the selective background smoothing term is presented to keep accurate phase speeds of the propagating nonlinear waves. The nonlinear shock-capturing term that has been modeled by the second-order derivative term is combined with it to improve the resolution of discontinuities and stabilize the strong nonlinear waves. It is shown that the improved artificial dissipation model with an adaptive control constant which is independent of problem types reproduces the correct profiles and speeds of nonlinear waves, suppresses numerical oscillations near discontinuity and avoids unnecessary damping on the smooth linear acoustic waves. The feasibility and performance of the adaptive nonlinear artificial dissipation model are investigated by the applications to actual computational aeroacoustics problems.

  • PDF