• Title/Summary/Keyword: form-accuracy

Search Result 1,350, Processing Time 0.026 seconds

A Study of Parametric Curve Interpolator in CAD/CAM Ststem (CAD/CAM 시스템에서 매개변수형 곡선본간기에 관한 연구)

  • 김희송
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.5 no.4
    • /
    • pp.47-52
    • /
    • 1996
  • The interpolator is very important in CNC machines. This study proposed a parametric curve interpolator(PCI) which can be used for machining any sculptured surface represented in a parametric form and generates commands for tool motion between CAD data points according to given accuracy demands. The proposed interpolator is superior to the existing linear interpolator in accuracy, feed rate and acceleration continuity. Moreover in comparison to the recently developed cubic spline interpolator, the PCI has the capability of handling higher order parametric curves and also ensures precise tracking in the velocity domain. Results from real time simulations and experiments on open architecture CNC machines equipped with the proposed interpolator are presented to show its practical capagility. It is believed that the combination of the proposed interpolator and the open architecture machine controller further advances the area of command generation which is an important aspect of CAD/CAM.

  • PDF

Ultra-precision Grinding Machining of Glass Rod Lens Core With Aspheric (비구면 Glass Rod 렌즈 금형의 초정밀 연삭가공)

  • Kim, Woo-Soon;Kim, Dong-Hyun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.1
    • /
    • pp.76-82
    • /
    • 2009
  • To obtain the surface roughness with nano order, we need a ultra-precision machine, cutting condition, and materials. In this paper, the cutting condition for getting nano order smooth surface of core have been examined experimentally by the ultra-precision machine and diamond wheels. The effects of the cutting velocity, the feed rate and depth of cut on the surface roughness were studied. And also, the surface roughness was measured by the Form Talysurf series PGI 840. The champion data of developed core was surface roughness Rmax 24.6nm, figure accuracy Rmax 68.9nm.

Development of a Weekly Load Forecasting Expert System (주간수요예측 전문가 시스템 개발)

  • Hwang, Kap-Ju;Kim, Kwang-Ho;Kim, Sung-Hak
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.4
    • /
    • pp.365-370
    • /
    • 1999
  • This paper describes the Weekly Load Forecasting Expert System(Named WLoFy) which was developed and implemented for Korea Electric Power Corporation(KEPCO). WLoFy was designed to provide user oriented features with a graphical user interface to improve the user interaction. The various forecasting models such as exponential smoothing, multiple regression, artificial nerual networks, rult-based model, and relative coefficient model also have been included in WLofy to increase the forecasting accuracy. The simulation based on historical data shows that the weekly forecasting results form WLoFy is an improvement when compared to the results from the conventional methods. Especially the forecasting accuracy on special days has been improved remakably.

  • PDF

Iris Recognition Using Ridgelets

  • Birgale, Lenina;Kokare, Manesh
    • Journal of Information Processing Systems
    • /
    • v.8 no.3
    • /
    • pp.445-458
    • /
    • 2012
  • Image feature extraction is one of the basic works for biometric analysis. This paper presents the novel concept of application of ridgelets for iris recognition systems. Ridgelet transforms are the combination of Radon transforms and Wavelet transforms. They are suitable for extracting the abundantly present textural data that is in an iris. The technique proposed here uses the ridgelets to form an iris signature and to represent the iris. This paper contributes towards creating an improved iris recognition system. There is a reduction in the feature vector size, which is 1X4 in size. The False Acceptance Rate (FAR) and False Rejection Rate (FRR) were also reduced and the accuracy increased. The proposed method also avoids the iris normalization process that is traditionally used in iris recognition systems. Experimental results indicate that the proposed method achieves an accuracy of 99.82%, 0.1309% FAR, and 0.0434% FRR.

A Hybrid Method for Vibration Analysis of Rotor Systems (회전축계의 진동해석을 위한 Hybrid법에 관한 연구)

  • 양보석;최원호
    • Journal of KSNVE
    • /
    • v.2 no.4
    • /
    • pp.265-272
    • /
    • 1992
  • The simplest method which has been used extensively for vibration analysis is the transfer matrix method introduced by Myklestad and was later extended by many researchers. The crude approximation results in considerable error on the predicted natural frequencies and to increase the accuracy the number of elements used in the analysis must be increased. In addition, numerical instability can occur as a result of matrix multiplication. Also the main disadvantage of the finite element method is the large computer memory requirements for complex systems. The new method proposed in this paper combines the transfer matrix and finite dynamic element techniques to form a powerful algorithm for vibration analysis of rotor system. It is shown that the accuracy improves significantly when the transfer matrix for each segment is obtained from finite dynamic element techniques.

  • PDF

Geometrically nonlinear meshfree analysis of 3D-shell structures based on the double directors shell theory with finite rotations

  • Mellouli, Hana;Jrad, Hanen;Wali, Monther;Dammak, Fakhreddine
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.397-408
    • /
    • 2019
  • In this paper, a geometrically nonlinear meshfree analysis of 3D various forms of shell structures using the double director shell theory with finite rotations is proposed. This theory is introduced in the present method to remove the shear correction factor and to improve the accuracy of transverse shear stresses with the consideration of rotational degrees of freedom.The present meshfree method is based on the radial point interpolation method (RPIM) which is employed for the construction of shape functions for a set of nodes distributed in a problem domain. Discrete system of geometrically nonlinear equilibrium equations solved with the Newton-Raphson method is obtained by incorporating these interpolations into the weak form. The accuracy of the proposed method is examined by comparing the present results with the accurate ones available in the literature and good agreements are found.

Performance Analysis of Local Network PPP-RTK using GPS Measurements in Korea

  • Jeon, TaeHyeong;Park, Sang Hyun;Park, Sul Gee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.263-268
    • /
    • 2022
  • Precise Point Positioning-Real Time Kinematic (PPP-RTK) is a high accuracy positioning method that combines RTK and PPP to overcome the limitations on service coverage of RTK and convergence time of PPP. PPP-RTK provides correction data in the form of State Space Representation (SSR), unlike RTK, which provides measurement-based Observation Space Representation (OSR). Due to this, PPP-RTK has an advantage that it can transmit less data than RTK. So, recently, several techniques for PPP-RTK have been proposed. However, in order to utilize PPP-RTK techniques, performance analysis of these in a real environment is essential. In this paper, we implement the local network PPP-RTK and analyze the positioning performance according to the distance within 100 km from the reference station in Korea. As results of experiment, the horizontal and vertical 95% errors of local network PPP-RTK were 6.25 cm and 5.86 cm or less, respectively.

Performance Analysis and Power Allocation for NOMA-assisted Cloud Radio Access Network

  • Xu, Fangcheng;Yu, Xiangbin;Xu, Weiye;Cai, Jiali
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.3
    • /
    • pp.1174-1192
    • /
    • 2021
  • With the assistance of non-orthogonal multiple access (NOMA), the spectrum efficiency and the number of users in cloud radio access network (CRAN) can be greatly improved. In this paper, the system performance of NOMA-assisted CRAN is investigated. Specially, the outage probability (OP) and ergodic sum rate (ESR), are derived for performance evaluation of the system, respectively. Based on this, by minimizing the OP of the system, a suboptimal power allocation (PA) scheme with closed-form PA coefficients is proposed. Numerical simulations validate the accuracy of the theoretical results, where the derived OP has more accuracy than the existing one. Moreover, the developed PA scheme has superior performance over the conventional fixed PA scheme but has smaller performance loss than the optimal PA scheme using the exhaustive search method.

Timing Simulator by Waveform Relaxation Considering the Feedback Effect (피이드백 효과를 고려한 파형이완 방식에 의한 Timing Simulator)

  • Jun, Young Hyun;Lee, Chang Woo;Lee, Kijun;Park, Song Bai
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.2
    • /
    • pp.347-354
    • /
    • 1987
  • Timing simulators are widely used nowadays for analyzing large-scale MOS digital circuits, which, however, have several limitations such as nonconvergence and/or in accuracy for circuits containing tightly coupled feedback elements or loops. This paper describes a new timing simulator which aims at solving these problems. The algorithm employed is based on the wave-form relaxation method, but exploits the signal flow along the feedback loops. Each of feedback loops is treated as one circuit block and then local iterations are performed to enhance the timing simulation. With these techniques, out simulator can analyze the MOS digital circuits with up to 5-20 times of the magnitude speed improvemnets as compared to SPICE2, while maintaining the accuracy.

  • PDF

The Effects of Task Complexity for Text Summarization by Korean Adult EFL Learners

  • Lee, Haemoon;Park, Heesoo
    • Journal of English Language & Literature
    • /
    • v.57 no.6
    • /
    • pp.911-938
    • /
    • 2011
  • The present study examined the effect of two variables of task complexity, reasoning demand and time pressure, each from the resourcedirecting and resource-dispersing dimension in Robinson's (2001) framework of task classification. Reasoning demand was operationalized as the two types of texts to read and summarize, expository and argumentative. Time pressure was operationalized as the two modes of performance, oral and written. Six university students summarized the two types of text orally and twenty four students from the same school summarized them in the written form. Results from t test and ANCOVA showed that in the oral mode, reasoning demand tends to heighten the complexity of the language used in the summary in competition with accuracy but such an effect disappeared in the written mode. It was interpreted that the degree of time pressure is not the only difference between the oral and written modes but that the two modes may be fundamentally different cognitive tasks, and that Robinson's (2001) and Skehan's (1998) models were differentially supported by the oral mode of tasks but not by the written mode of the tasks.