• Title/Summary/Keyword: form release agent

Search Result 23, Processing Time 0.019 seconds

Inhibitory Effect of Chlorine Dioxide Using Reactive Oxygen Species Against Heart Contraction of the Indianmeal Moth, Plodia interpunctella (이산화염소의 활성산소 발생에 따른 화랑곡나방 심장박동 억제 효과)

  • Kim, Chul-young;Kwon, Hyeok;Kim, Wook;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.56 no.2
    • /
    • pp.147-152
    • /
    • 2017
  • Heart contraction is essential for insect hemolymph circulation, in which various physiological changes need control of the heart contraction. Thus, interruption of heartbeats intimidate insect survival. Chlorine dioxide induces release of reactive oxygen species (ROS), which has been regarded as the main insecticidal agent. This study analyzed the effect of chlorine dioxide on heartbeats of the Indianmeal moth, Plodia interpunctella. The larvae have the dorsal vessel on the medial dorsal region in a form of an extending tube from the first thorax to 10th abdominal segment. Dorsal vessel contraction was noticeable between 3rd and 10th abdominal segments, where five heart chambers were observed. Average heartbeat rate was 118.6 beats per min at $25^{\circ}C$. However, the heartbeats varied with ambient temperature. Injection of chlorine dioxide to hemocoel suppressed the heartbeats in a dose-dependent manner. The suppressive effect of chlorine dioxide also increased with exposure time to gas form of the chemical at 100 ppm. However, vitamin E (an antioxidant against ROS) treatment significantly rescued the larvae treated with chlorine dioxide in the heart contraction activity. These results suggest that chlorine dioxide negatively influences on the heart contraction of P. interpunctella via its production of ROS.

Preparation of Chitosan-Gold and Chitosan-Silver Nanodrug Carrier Using QDs (QDs를 이용한 키토산-골드와 키토산-실버 나노약물전달체 제조)

  • Lee, Yong-Choon;Kang, Ik-Joong
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.200-205
    • /
    • 2016
  • A drug transport carrier could be used for safe send of drugs to the affected region in a human body. The chitosan is adequate for the drug delivery carrier because of adaptable to living body. The gold, a metallic nanoparticles, tends to form a nano complex at rapidly when it combined with chitosan because of its negative charge. having energy from the other, outer gold nano-complex make heat due to its property to release the contained drugs to the target area. Silver could be also formed an useful biocompatible nano-composites with chitosan which should be used as an useful drug transfer carrier because its special ability to protect microbial contamination. Being one of the oxidized nano metals, $Fe_3O_4$ is nontoxic and has been used for its magnetic characteristics. In this study, the control of catalyst, reducing agent, and solvent amount. The chitosan-$Fe_3O_4$-gold & silver nanoshell have been changed to form about 100 nm size by ionic bond between the amine group, an end group of chitosan, and the metal. It was observed the change in order to seek for its optimum reaction condition as a drug transfer carrier.

A Study of Iron Pot Casting and Bellows Technology (토제 거푸집 무쇠솥 주조와 불미기술 연구)

  • Yun, Yonghyun;Doh, Jungmann;Jeong, Yeongsang
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.2
    • /
    • pp.4-23
    • /
    • 2020
  • The purpose of this study was to explore the diversity of Korea's iron casting technology and to examine various casting methods. The study involved a literature review, analysis of artifacts, local investigation of production tools and technology, and scientific analysis of casting and cast materials. Bellows technology, or Bulmi technology, is a form of iron casting technology that uses bellows to melt cast iron before the molten iron is poured into a clay cast. This technology, handed down only in Jeju Island, relies on use of a clay cast instead of the sand cast that is more common in mainland Korea. Casting methods for cast iron pots can be broadly divided into two: sand mold casting and porcelain casting. The former uses a sand cast made from mixing seokbire (clay mixed with soft stones), sand and clay, while the latter uses a clay cast, formed by mixing clay with rice straw and reed. The five steps in the sand mold casting method for iron pot are cast making, filling, melting iron into molten iron, pouring the molten iron into the cast mold, and refining the final product. The six steps in the porcelain clay casting method are cast making, cast firing, spreading jilmeok, melting iron into molten iron, pouring the molten iron, and refining the final product. The two casting methods differ in terms of materials, cast firing, and spreading of jilmeok. This study provided insight into Korea's unique iron casting technology by examining the scientific principles behind the materials and tools used in each stage of iron pot casting: collecting and kneading mud, producing a cast, biscuit firing, hwajeokmosal (building sand on the heated cast) and spreading jilmeok, drying and biyaljil (spreading jilmeok evenly on the cast), hapjang (combining two half-sized casts to make one complete cast), producing a smelting furnace, roasting twice, smelting, pouring molten iron into a cast, and refining the final product. Scientific analysis of the final product and materials involved in porcelain clay casting showed that the main components were mud and sand (SiO2, Al2O3, and Fe2O3). The release agent was found to be graphite, containing SiO2, Al2O3, Fe2O3, and K2O. The completed cast iron pot had the structure of white cast iron, comprised of cementite (Fe3C) and pearlite (a layered structure of ferrite and cementite).