• Title/Summary/Keyword: forest management ratio

Search Result 211, Processing Time 0.022 seconds

Cost-Benefit Analysis for Planting Type of Street Trees (가로수 조성 유형에 따른 비용편익 비교 분석)

  • Kim, Joon Soon;Lee, Dong Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.17 no.6
    • /
    • pp.29-37
    • /
    • 2014
  • The objective of this study is to estimate the cost and benefits of street trees for their planting types, specifically, single row, single row+bottom, double row, double row+bottom. Different planting types are compared and analyzed by using Net Present Value (NPV) and benefit-cost ratio (BCR). Existing data are collected from the literature reviews for the use of meta-analysis method for estimating cost and benefit. The elements for analyzing costs are management and planting costs, and benefits are air purification, energy saving and landscape view. The discount rate is applied at a minimum of 3% and a maximum of 5.5%. The unit used in this calculation is km/year. The result shows that the net benefit is highest in double row, followed by single row, double row+bottom, and single row+bottom. The BCR is the highest in double row, followed by single row, double row+bottom, and single row+bottom. The BCR reaches the break-even point from 9 to 17 years depending on the planting types.

A Study on the Classification of Forest by Landsat TM Data (Landsat TM 자료를 이용한 임종구분에 관한 연구)

  • 최승필;홍성태;박재훈
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.11 no.1
    • /
    • pp.55-60
    • /
    • 1993
  • Forest occupied a part of natural ecosystem carries out a role of purifying air, preserving water resource, prevention of the breeding and extermination, recreation areas and etc that preserve and for me one's living environment. In this study, the classification for management of this forest is performed with Landsat TM Image. The classes are decided needle-leaf trees, broad-leaf trees, farming land and grass land, and water. When the TM digital images are classified on computer, water is represented in 7∼13 D.N. of 4th band. But the others is appeared similar mostly specific values so that must be done image processing. When the images compounded 2ed band and 3ed band are processed with ratio of enhancement. Needle-leaf treas is represented in l18∼136 D.N. of 1st band, broad-leaf trees in 72∼91 D.N. of 3ed band, farm land and glass land in 96∼120 of 3ed band. Forest Information is classified with M.L.C, an image classification method. The errors of needle-leaf trees, broad-leaf trees, farm land and grass land, and water are appeared each -7.43, +1.89,+7.58 and -2.04 as compared the digital image with investigation on the scene. Finally, these results are useful for classification of forest vegetation with Landsat TM Image.

  • PDF

Analysis of Land Cover Classification and Pattern Using Remote Sensing and Spatial Statistical Method - Focusing on the DMZ Region in Gangwon-Do - (원격탐사와 공간통계 기법을 이용한 토지피복 분류 및 패턴 분석 - 강원도 DMZ일원을 대상으로 -)

  • NA, Hyun-Sup;PARK, Jeong-Mook;LEE, Jung-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.4
    • /
    • pp.100-118
    • /
    • 2015
  • This study established a land-cover classification method on objects using satellite images, and figured out distributional patterns of land cover according to categories through spatial statistics techniques. Object-based classification generated each land cover classification map by spectral information, texture information, and the combination of the two. Through assessment of accuracy, we selected optimum land cover classification map. Also, to figure out spatial distribution pattern of land cover according to categories, we analyzed hot spots and quantified them. Optimal weight for an object-based classification has been selected as the Scale 52, Shape 0.4, Color 0.6, Compactness 0.5, Smoothness 0.5. In case of using the combination of spectral information and texture information, the land cover classification map showed the best overall classification accuracy. Particularly in case of dry fields, protected cultivation, and bare lands, the accuracy has increased about 12 percent more than when we used only spectral information. Forest, paddy fields, transportation facilities, grasslands, dry fields, bare lands, buildings, water and protected cultivation in order of the higher area ratio of DMZ according to categories. Particularly, dry field sand transportation facilities in Yanggu occurred mainly in north areas of the civilian control line. dry fields in Cheorwon, forest and transportation facilities in Inje fulfilled actively in south areas of the civilian control line. In case of distributional patterns according to categories, hot spot of paddy fields, dry fields and protected cultivation, which is related to agriculture, was distributed intensively in plains of Yanggu and in basin areas of Cheorwon. Hot spot areas of bare lands, waters, buildings and roads have similar distribution patterns with hot spot areas related to agriculture, while hot spot areas of bare lands, water, buildings and roads have different distributional patterns with hot spot areas of forest and grasslands.

A Study on the Development of Topographical Variables and Algorithm for Mountain Classification (산지 경계 추출을 위한 지형학적 변수 선정과 알고리즘 개발)

  • Choi, Jungsun;Jang, Hyo Jin;Shim, Woo Jin;An, Yoosoon;Shin, Hyeshop;Lee, Seung-Jin;Park, Soo Jin
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.3
    • /
    • pp.1-18
    • /
    • 2018
  • In Korea, 64% of the land is known as mountain area, but the definition and classification standard of mountain are not clear. Demand for utilization and development of mountain area is increasing. In this situation, the unclear definition and scope of the mountain area can lead to the destruction of the mountain and the increase of disasters due to indiscreet permission of forestland use conversion. Therefore, this study analyzed the variables and criteria that can extract the mountain boundaries through the questionnaire survey and the terrain analysis. We developed a mountain boundary extraction algorithm that can classify topographic mountain by using selected variables. As a result, 72.1% of the total land was analyzed as mountain area. For the three catchment areas with different mountain area ratio, we compared the results with the existing data such as forestland map and cadastral map. We confirmed the differences in boundary and distribution of mountain. In a catchment area with predominantly mountainous area, the algorithmbased mountain classification results were judged to be wider than the mountain or forest of the two maps. On the other hand, in the basin where the non-mountainous region predominated, algorithm-based results yielded a lower mountain area ratio than the other two maps. In the two maps, we was able to confirm the distribution of fragmented mountains. However, these areas were classified as non-mountain areas in algorithm-based results. We concluded that this result occurred because of the algorithm, so it is necessary to refine and elaborate the algorithm afterward. Nevertheless, this algorithm can analyze the topographic variables and the optimal value by watershed that can distinguish the mountain area. The results of this study are significant in that the mountain boundaries were extracted considering the characteristics of different mountain topography by region. This study will help establish policies for stable mountain management.

Comparative characteristic of ensemble machine learning and deep learning models for turbidity prediction in a river (딥러닝과 앙상블 머신러닝 모형의 하천 탁도 예측 특성 비교 연구)

  • Park, Jungsu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.35 no.1
    • /
    • pp.83-91
    • /
    • 2021
  • The increased turbidity in rivers during flood events has various effects on water environmental management, including drinking water supply systems. Thus, prediction of turbid water is essential for water environmental management. Recently, various advanced machine learning algorithms have been increasingly used in water environmental management. Ensemble machine learning algorithms such as random forest (RF) and gradient boosting decision tree (GBDT) are some of the most popular machine learning algorithms used for water environmental management, along with deep learning algorithms such as recurrent neural networks. In this study GBDT, an ensemble machine learning algorithm, and gated recurrent unit (GRU), a recurrent neural networks algorithm, are used for model development to predict turbidity in a river. The observation frequencies of input data used for the model were 2, 4, 8, 24, 48, 120 and 168 h. The root-mean-square error-observations standard deviation ratio (RSR) of GRU and GBDT ranges between 0.182~0.766 and 0.400~0.683, respectively. Both models show similar prediction accuracy with RSR of 0.682 for GRU and 0.683 for GBDT. The GRU shows better prediction accuracy when the observation frequency is relatively short (i.e., 2, 4, and 8 h) where GBDT shows better prediction accuracy when the observation frequency is relatively long (i.e. 48, 120, 160 h). The results suggest that the characteristics of input data should be considered to develop an appropriate model to predict turbidity.

Early Effect of Environment-friendly Harvesting on the Dynamics of Organic Matter in a Japanese Larch (Larix leptolepis) Forest in Central Korea (중부지역 일본잎갈나무림의 친환경벌채가 산림 내 유기물 변화에 미치는 초기 영향)

  • Wang, Rui Jia;Kim, Dong Yeob
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.4
    • /
    • pp.473-481
    • /
    • 2022
  • Environment-friendly harvesting is practiced to maintain ecosystem, landscape, and forest protection functions. The present study was conducted at Simgok-ri, Sinbuk-myeon, Pocheon, Gyeonngi-do, where a 41-50-year-old Japanese larch forest was harvested in an environment-friendly manner from 2017 to 2019. The dynamics of organic matter in this forest were investigated at three years after the harvest. Specifically, organic matter content was measured on the forest floor and in overstory biomass, litterfall, and soil up to 30 cm in depth from June 2020 to January 2021. Owing to the harvest, the amount of overstory biomass of the Japanese larch stands decreased from 142.22 to 44.20 t ha-1. On the forest floor, the amount of organic matter was 32.87 t ha-1 in the control plots and 23.34 t ha-1 in the harvest plots. Annual litterfall was 4.43 t ha-1 yr-1 in the control plots and 1.16 t ha-1 yr-1 in the harvest plots. Soil bulk density in the B horizon was 0.97 g cm-3 in the control plots and 1.06 g cm-3 i n the harvest plots. Soil organic matter content was 11.5% in the control plots and 12.8% in the harvest plots. The total amount of soil organic matter did not differ significantly between the control plots (245.21 t ha-1) and harvest plots (263.92 t ha-1), although the amount of soil organic matter tended to be higher in the harvest plots. The total amount of organic matter in the forest was estimated to be 406.48 t ha-1 in the control plots and 338.21 t ha-1 in the harvest plots. In the harvest plots, the ratio of aboveground organic matter decreased to 13.1% and soil organic matter increased to 78.0%, indicating that the distribution of organic matter changed significantly in these plots. Overall, the carbon accumulated in aboveground biomass was substantially reduced by environment-friendly harvesting, whereas the soil carbon level increased, which played a role in mitigating the reduction of system carbon in the forest. These results highlight one possible resolution for forest management in terms of coping with climate change. However, given that only three years of environment-friendly harvesting data were analyzed, further research on the dynamics of organic matter and tree growth is needed.

Effects of Shading Treatments on Growth and Physiological Characteristics of Aruncus dioicus var. kamtschaticus (Maxim.) H. Hara Seedling (차광처리가 눈개승마 유묘의 생장 및 생리적 특성에 미치는 영향)

  • Lee, Kyeong Cheol;Han, Sang Kyun;Kwon, Young Hyoo;Jeon, Seong Ryeol;Lee, Chang Woo;Seo, Dong Jin;Park, Wan Geun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.27 no.1
    • /
    • pp.30-37
    • /
    • 2019
  • Background: This study was conducted to investigate the changes in the photosynthetic parameters, chlorophyll content, chlorophyll fluorescence, and growth characteristics of Aruncus dioicus var. kamtschaticus seedlings under different shading treatments. Methods and Results: The shading treatment was regulated with the shading level (non-shaded, 35%, 55%, and 75% shading). Photosynthetic activities, such as net photosynthetic rate, stomatal conductance, stomatal transpiration rate, and performance index on absorption basis ($PI_{ABS}$)were the highest under 35% shading ($4.36{\mu}mol\;CO_2{\cdot}m^{-2}{\cdot}s^{-1}$, $54.2mmol\;H_2O{\cdot}m^2{\cdot}s^{-1}$, $0.66mmol\;H_2O{\cdot}m^{-2}{\cdot}s^{-1}$, and 1.3, respectively), and the lowest under 75% shading. This implies that the decrease in net photosynthetic rate may be due to an inability to regulate water and $CO_2$ exchanged through the stomata. Thechlorophylla, b, and a + b contents were increased with elevating shading level and the chlorophyll a/b ratio showed non-significant differences. It was found that the dry weight (leaf, shoot, and whole) was the highest (1.14 g, 0.49 g, and 2.31 g, respectively) under 35% shading and the t/R ratio was the highest under 75% shading. Conclusions: It is concluded that 75% shading exhibited a strong reduction of photosynthetic activity, and 35% shading showed the best conditions for the early growth and cultivation of A. dioicus var. kamtschaticus.

The Growth Performances and Soil Properties of Planted Zelkova serrata Trees according to Fertilization in Harvested Pinus rigida Plantation over 6 Years after Planting (조림지 시비 처리에 따른 리기다소나무 벌채지 내 식재 6년 후 느티나무 조림지 토양 및 조림목 생장 특성)

  • Yang, A-Ram;Cho, Min Seok
    • Journal of Korean Society of Forest Science
    • /
    • v.108 no.1
    • /
    • pp.29-39
    • /
    • 2019
  • The objective of this study was to suggest a suitable amount of fertilizer using the changes in growth performances and soil properties for improving survival and quality of Zelkova serrata trees in a harvested Pinus rigida plantation. One-year-old containerized seedlings of Z. serrata were planted with the density of 3000 seedlings $ha^{-1}$ in end of March 2011 at Gwangneung experimental forest, Pocheon. Solid compound fertilizer (N:P:K=3:4:1) were applied yearly in three amounts (control: no fertilization, F1: $180kg\;ha^{-1}$, and F2: $360kg\;ha^{-1}$) every May from 2011 to 2013. We analyzed soil properties before (2011) and after (2012 and 2017) fertilization. And we measured the root collar diameter and height of Z. serrata trees from 2011 to 2016, and then calculated H/D ratio and stem volume. Soil properties at Z. serrata plantation did not show difference according to fertilization level in every investigation year. As time passed after planting, however, concentrations of total nitrogen and available phosphorus were increased from decreased. The growth of root collar diameter, height and stem volume of Z. serrata trees at F2 plot were significantly higher those at the other plots after only 2 years of fertilization. Because Z. serrata tree demand to more nutrient during the early growing period. The survival rate of Z. serrata trees at control plot was significantly lower than that at the other plots. This might be due to Z. serrata trees at control plot had not the upper hand from competition with vegetation at the early in planting. However, the growth of height and stem volume of Z. serrata trees between F1 and F2 plots did not show difference over 6 years after planting. Consequently, we could suggest that Z. serrata trees need to F1 fertilization level for considering improving survival and quality of Z. serrata trees and economical efficiency of plantation managements after harvesting P. rigida plantation.

Seedling Age Effects on the Growth and Nutrient Uptake of Chamaecyparis obtusa Container Seedlings (편백 용기묘의 묘령에 따른 생장 및 양분 흡수 특성)

  • Deokgyo Jeong;Gyeongwon Baek;Choonsig Kim
    • Journal of Korean Society of Forest Science
    • /
    • v.113 no.1
    • /
    • pp.31-39
    • /
    • 2024
  • This study was performed to determine the effects of Four seedling age classes ageon the characteristics of growth and nutrient uptake in Chamaecyparis obtusa container seedlings. Seedlings (1-1, 2-0, 2-1, and 2-2 seedlings) of C. obtusa grown in containers were harvested to measure specific leaf area, height (H)/root collar diameter (D) ratio, dry mass of aboveground (T)/root dry mass (R) ratio, and seedling quality index of seedlings. The specific leaf area was highest in 1-0 seedlings (30.48 cm2 g-1), whereas it decreased (from 28.62 cm2 g-1 to 23.59 cm2 g-1) with increasing seedling age. The H/D ratio increased with increasing seedling age (from 4.41 in 1-0 seedlings to 8.35 in 2-2 seedlings). The T/R ratio decreased as the seedling age increased (from 4.29 in the 1-0 seedling to 2.13 in the 2-1 seedling). The seedling quality index increased with increasing seedling age (from 0.10 for the 1-0 seedling to 3.06 for the 2-2 seedling). The carbon concentrations of seedling components (leaf, branches, stem, and roots) did not differ significantly with seedling age, whereas the nitrogen concentration of seedling components was the lowest in 2-1 seedlings, as no fertilizer was applied to discourage excessive growth of the seedlings. Phosphorus, potassium, and magnesium concentrations in 2-1 seedling components were not affected by the lack of fertilizer application. These results can be applied to determine the optimum morphological characteristics and nutrient management by seedling age in container- grown C. obtusa.

Analysis of Change in Flora and Vegetation in the Research Sites before and after the Forest Road Construction in Minjujisan in Korea - Focused on the Forest Road at Jeollabuk-do Muju-gun Seolcheon-myeon Micheon-ri Minjujisan Area - (임도 개설 전·후 식물상 및 식생 변화 분석 - 전북 무주군 설천면 미천리 민주지산 임도를 중심으로 -)

  • Hyoun-Sook Kim;Joon-Woo Lee;Sang-Myong Lee
    • Korean Journal of Environment and Ecology
    • /
    • v.37 no.5
    • /
    • pp.367-391
    • /
    • 2023
  • This study was conducted for 10 years from 2012, which is a year before the forest road construction in Minjujisan, to 2022 to analyze annual changes in flora and vegetation before and after the forest road construction and to provide strategies for management. The plant communities in the research sites along the forest road showed the differentiation between slopes with Quercus mongolica community on the northwestern slope and Quercus variabilis and Larix kaempferi communities on the southwestern slope. A total of 212 taxa have increased for number 7 between before and after the construction from a total of 66 taxa (44 families, 59 genera, 51 species, 13 varieties, and 2 forma) in 2012 and 207 taxa (71 families, 153 genera, 176 species, 27 varieties, and 4 forma) in 2015 to 278 taxa (78 families, 172 genera, 242 species, 1 subspecies, 31 varieties, and 4 forma) in 2022. It is noteworthy that the vegetation cover and the introduction of new taxa had been expanded in the sites adjacent to the construction, which is likely caused by the significantly increased amount of light and the introduction of annual herbaceous and naturalized plants after the construction. The results of 10 years of current study reveal that the vegetation cover and the number of new taxa had rapidly increased in earlier years after the construction, slowly decreased later on, and finally formed a stable forest with the increase in the ratio of dominant species. The vegetation cover of the herbaceous layer immediately increased on the slopes along the forest road for a few years after the construction although it had continuously decreased while that of the shrub layer quickly increased. It was shown that on the hillslope the vegetation cover of tall- and low-tree layers increased whereas that of herbaceous and shrub layers rapidly decreased.