• Title/Summary/Keyword: forest ecosystems

Search Result 310, Processing Time 0.021 seconds

Method for Assessing Forest Carbon Sinks by Ecological Process-Based Approach - A Case Study for Takayama Station, Japan

  • Lee, Mi-Sun
    • The Korean Journal of Ecology
    • /
    • v.26 no.5
    • /
    • pp.289-296
    • /
    • 2003
  • The ecological process-based approach provides a detailed assessment of belowground compartment as one of the major compartment of carbon balance. Carbon net balance (NEP: net ecosystem production) in forest ecosystems by ecological process-based approach is determined by the balance between net primary production (NPP) of vegetation and heterotrophic respiration (HR) of soil (NEP=NPP-HR). Respiration due to soil heterotrophs is the difference between total soil respiration (SR) and root respiration (RR) (HR=SR-RR, NEP=NPP-(SR-RR)). If NEP is positive, it is a sink of carbon. This study assessed the forest carbon balance by ecological process-based approach included belowground compartment intensively. The case study in the Takayama Station, cool-temperate deciduous broad-leaved forest was reported. From the result, NEP was estimated approximately 1.2 t C $ha^{-1} yr^{-1}$ in 1996. Therefore, the study area as a whole was estimated to act as a sink of carbon. According to flux tower result, the net uptake rate of carbon was 1.1 t C $ha^{-1} yr^{-1}$.

Forest Fragmentation and its impacts : A review (산림파편화에 대한 국내·외 연구동향)

  • Kim, Eunyoung;Song, Wonkyong;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.2
    • /
    • pp.149-162
    • /
    • 2012
  • Habitat loss and fragmentation are ongoing major anthropogenic impacts on landscapes, which can strongly affect ecosystems, populations and species. The studies on forest fragmentation have been progressed, but the studies on definition of forest fragmentation and their synthetic trend in South Korea still leaves much to be desired. Therefore we set the definition of forest fragmentation and reviewed the related papers. We can give a definition that forest fragmentation is not only a process of spatial landscape transformation, but also a process of ecosystem change by it. The trend of studies on forest fragmentation divided into two fields, landscape and ecosystem changes. Forest fragmentation caused by land change altered the composition and configuration of forest patches. Most studies related on that analyzed the change using landscape index. The effects of forest fragmentation on ecosystem subdivided into three fields : biodiversity, edge effects, and invasive species, but the studies in South Korea is short. The study on relations between forest fragmentation and ecosystem change is necessary to face the Convention on Biological Diversity in South Korea. In addition, the fundamental studies on biodiversity is important to mitigate against forest fragmentation.

Strategy Prospects of Environmental Restoration of Stream Side in Japan(V) -With a Special Reference to the Application of Korean Style- (일본(日本)에서 계류변(溪流邊)의 환경복원(環境復元) 발전전략(發展戰略)(V) -한국적(韓國的) 적용(適用)을 중심(中心)으로-)

  • Park, Jae-Hyeon;Woo, Bo-Myeong;Kwon, Tae-Ho;Lee, Heon-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.4 no.1
    • /
    • pp.80-89
    • /
    • 2001
  • The objective of this study was to introduce the current status and development strategy for the environmental restoration of stream side in Japan, and to consider the methodology which could be effectively applied to the environmental restoration of stream side in Korea. 1. We should establish a new paradigm of forest conservation and erosion control which can emphasize the restoration of the stream side ecosystem and reduce soil movement in the areas. Also, in the past, the objective of forest conservation and erosion control was to fix soil by constructing permanent structures. The direction of future forest conservation and erosion control needs to be new forest conservation and erosion control technology to prevent large scale soil movement but allow small scale soil movement to conserve sound ecosystem and biotic habitats. 2. In the past, the goal of forest conservation and erosion control planning was to fix the amount of soil movement by constructing permanent facilities. Forest conservation and erosion control planning in the future needs to change the techniques which could prevent soil movement from large scale of soil disasters, but allow soil movement effectively to a small and middle scale's soil movement. Also, it is considered to change erosion control dams from non passing type to passing type. 3. In the point of ecological conservation aspects, we should evaluate the effects of new forest conservation and erosion control methods which are emphasized on the restoration of the stream side ecosystem. Also, forest conservation and erosion control construction projects for restoring stream and river ecosystem should be planned for perfectly restorating their ecosystems by the way of sustainable maintenance and management. 4. The restoration direction of stream and river ecosystems needs to be restoring the diversity of small geographies such as waterway, shoal and puddles rather than flattening stream bed. And the restoration of the stream side ecosystem should provide continuity of the stream side environment which allows desirable biological habitats, and environmentally sound facilities to harmonize with the environment.

  • PDF

Linking Spatial Characteristics of Forest Structure and Burn Severity (산림 공간구조 특성과 산불 연소강도와의 관계에 관한 연구)

  • Lee, Sang-Woo;Lim, Joo-Hoon;Won, Myoung-Su;Lee, Joo-Mee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.5
    • /
    • pp.28-41
    • /
    • 2009
  • Because fire has significant impacts on fauna and flora in forest ecosystems, as well as socioeconomic influences to local community, it has been an important field of study for decades. One of the most common ways to reduce fire risk is to enhance fire-resilience of forest through fuel treatments including thinning and prescribed burning. Since fuel treatment can't be practiced over all forested areas, appropriate and effective strategies are needed. The present study aims to look at the relationship between spatial characteristics of forest structure measured with landscape pattern metrics and burn severity to provide guidelines for effective fuel treatments. Samchuck fire was selected for the study, and 232 grids covering the study areas were generated, and the grid size was 1km. The burn severity is measured with dNBR derived from satellite imagery, and spatial characteristics of forest structure were measured using FRAGSTATS for both landscape and class levels for each 1km grid. The results of this study strongly indicated that heterogeneity in composition and configuration of forests may significantly reduce burn severity. By enhancing heterogeneity of forests, fuel treatments for fire-resilience forest could be more effective.

Forest Vertical Structure Mapping from Bi-Seasonal Sentinel-2 Images and UAV-Derived DSM Using Random Forest, Support Vector Machine, and XGBoost

  • Young-Woong Yoon;Hyung-Sup Jung
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.2
    • /
    • pp.123-139
    • /
    • 2024
  • Forest vertical structure is vital for comprehending ecosystems and biodiversity, in addition to fundamental forest information. Currently, the forest vertical structure is predominantly assessed via an in-situ method, which is not only difficult to apply to inaccessible locations or large areas but also costly and requires substantial human resources. Therefore, mapping systems based on remote sensing data have been actively explored. Recently, research on analyzing and classifying images using machine learning techniques has been actively conducted and applied to map the vertical structure of forests accurately. In this study, Sentinel-2 and digital surface model images were obtained on two different dates separated by approximately one month, and the spectral index and tree height maps were generated separately. Furthermore, according to the acquisition time, the input data were separated into cases 1 and 2, which were then combined to generate case 3. Using these data, forest vetical structure mapping models based on random forest, support vector machine, and extreme gradient boost(XGBoost)were generated. Consequently, nine models were generated, with the XGBoost model in Case 3 performing the best, with an average precision of 0.99 and an F1 score of 0.91. We confirmed that generating a forest vertical structure mapping model utilizing bi-seasonal data and an appropriate model can result in an accuracy of 90% or higher.

Carbon Sequestration of Teak (Tectona grandis Linn. f.) Plantations in the Bago Yoma Region of Myanmar

  • Oo, Thaung Naing;Lee, Don Koo;Combalicer, Marilyn
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.5
    • /
    • pp.602-608
    • /
    • 2007
  • Forest plantations become important strategy not merely for the financial aspect, but for carbon sequestration and ecosystem stability. Forest plantations increase the density of the forest biomass, which reduce the increase in atmospheric carbon dioxide. Biomass density is also a useful variable for comparing structural and functional attributes of forest ecosystems across a wide range of environmental conditions. In this study, carbon sequestration of teak (Tectona grandis Linn. f.) in the individual tree and plantation levels estimation was carried out Site-specific allometric equation for the estimation of teak tree biomass was developed based on the direct measurement of fifteen (15) harvested trees in the Oak-twin Township of the Bago Yoma Region, Myanmar. A regression equation of the diameter at breast height (DBH) and the aboveground biomass (carbon content) was constructed to estimate the carbon storage level of plantations, which averaged 79 ton/ha. The average carbon accumulation in the soil (up to 30 cm in depth) was estimated 38.89 ton/ha, The highest mean annual increment (MAI) of total carbon was found in the 6-yr-old teak plantation (12.10 ton/ha/yr) whereas the lowest MAI was in the 26-yr-old teak plantation (4.31 ton/ha/yr).

Management Plan of Relationship between Land Development and Forest Fragmentation in Metropolitan Area (수도권 내 개발계획관련 요소와 산림파편화 관계분석을 통한 관리방안)

  • Lee, Dong-Kun;Kim, Eun-Young
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.35 no.6
    • /
    • pp.37-47
    • /
    • 2008
  • Recently, reckless exploitation of land resources without much consideration for the environmental value of the land has been witnessed to accommodate the ever-increasing demands for regional development. Fragmentation due to land development is a major reason for the declining biodiversity in forest ecosystems. The purposes of this study were (1) to investigate the relationship between the factors of land development and forest fragmentation in 13 watersheds of a metropolitan area and (2) to suggest a forest management plan through the relationship. We carried out a factor analysis to determine explanatory axes of forest fragmentation, and then conducted a correlation analysis between the factor scores and the factor of land development, such as the rate of built-up areas, road density, number of built-up patches, and area of housing developments. The first explanatory axis represented stability of landscape highly related with the rate of the built-up area and road density. The second axis represented the level of fragment highly related with a number of built-up patches. Forest fragmentation patterns of the 13 watersheds were classified for the similarity in forest fragmentation. This study presents the forest management plans including distribution and level of land development and forest conservation.

Long-term Effects on Forest Biomass under Climate Change Scenarios Using LANDIS-II - A case study on Yoengdong-gun in Chungcheongbuk-do, Korea - (산림경관천이모델(LANDIS-II)를 이용한 기후변화 시나리오에 따른 산림의 생물량 장기변화 추정 연구 -충청북도 영동군 학산면 봉소리 일대 산림을 중심으로 -)

  • Choi, Young-Eun;Choi, Jae-Yong;Kim, Whee-Moon;Kim, Seoung-Yeal;Song, Won-Kyong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.5
    • /
    • pp.27-43
    • /
    • 2019
  • This study applied the LANDIS-II model to the forest vegetation of the study area in Yeongdong-gun, Korea to identify climate effects on ecosystems of forest vegetation. The main purpose of the study is to examine the long-term changes in forest aboveground biomass(AGB) under three different climate change scenarios; The baseline climate scenario is to maintain the current climate condition; the RCP 4.5 scenario is a stabilization scenario to employ of technologies and strategies for reducing greenhouse gas emissions; the RCP 8.5 scenario is increasing greenhouse gas emissions over time representative with 936ppm of $CO_2$ concentration by 2100. The vegetation survey and tree-ring analysis were conducted to work out the initial vegetation maps and data for operation of the LANDIS model. Six types of forest vegetation communities were found including Quercus mongolica - Pinus densiflora community, Quercus mongolica community, Pinus densiflora community, Quercus variabilis-Quercus acutissima community, Larix leptolepis afforestation and Pinus koraiensis afforestation. As for changes in total AGB under three climate change scenarios, it was found that RCP 4.5 scenario featured the highest rate of increase in AGB whereas RCP 8.5 scenario yielded the lowest rate of increase. These results suggest that moderately elevated temperatures and $CO_2$ concentrations helped the biomass flourish as photosynthesis and water use efficiency increased, but huge increase in temperature ($above+4.0^{\circ}C$) has resulted in the increased respiration with increasing temperature. Consequently, Species productivity(Biomass) of trees decrease as the temperature is elevated drastically. It has been confirmed that the dominant species in all scenarios was Quercus mongolica. Like the trends shown in the changes of total AGB, it revealed the biggest increase in the AGB of Quercus mongolica under the RCP 4.5 scenario. AGB of Quercus mongolica and Quercus variabilis decreased in the RCP 4.5 and RCP 8.5 scenarios after 2050 but have much higher growth rates of the AGB starting from 2050 under the baseline scenario. Under all scenarios, the AGB of coniferous species was eventually perished in 2100. In particular they were extinguished in early stages of the RCP 4.5 and RCP 8.5 scenarios. This is because of natural selection of communities by successions and the failure to adapt to climate change. The results of the study could be expected to be effectively utilized to predict changes of the forest ecosystems due to climate change and to be used as basic data for establishing strategies for adaptation climate changes and the management plans for forest vegetation restoration in ecological restoration fields.

Accumulated organic matter, litterfall production, and decomposition tell us the status of litter dynamics in forests

  • Kim, Jae-Geun
    • Journal of Ecology and Environment
    • /
    • v.35 no.2
    • /
    • pp.99-109
    • /
    • 2012
  • Litterfall dynamics in forests are assessed by estimating biomass production and decomposition. However, there have been few studies on how litter dynamics impact the health and management of ecosystems. Here, a new approach to measure and assess ecosystem function is presented based on conventional methods using littertraps, litterbags, and the mass on the forest floor. To assess the status of litter dynamics, the decay rate (k) was estimated from a litterbag experiment, and removal rates ($k_i$) were determined from mass balance on the forest floor at 21 sites on three mountains in South Korea. The $k_3$ (organic mass ratio of $O_i$ and $O_e+O_a$ + A horizons in November) values in an equilibrium state in South Korea were within the range of $k{\pm}0.174$ when considering the annual variation of litterfall production. This study also suggests that sampling sites for these types of studies should be in the middle, not at the ends, of steady slopes on the forest floor.