• Title/Summary/Keyword: forest ecosystem

Search Result 911, Processing Time 0.027 seconds

Carbon Storage of Pure and Mixed Pine-Deciduous Oak Forests in Gwangneung, Central Korea

  • Lee, Sue-Kyoung;Son, Yo-Whan;Noh, Nam-Jin;Yoon, Tae-Kyung;Lee, Ah-Reum;Seo, Kyung-Won;Hwang, Jae-Hong;Bae, Sang-Won
    • Journal of Ecology and Environment
    • /
    • v.32 no.4
    • /
    • pp.237-247
    • /
    • 2009
  • This study was conducted to determine the carbon (C) contents in different mixed stands of P. dens if/ora and deciduous oak species in Gwangneung, central Korea. Five mixed stands with different ratios of P. densiflora and deciduous oak species were chosen based on the basal area of all trees ${\geq}\;5cm$ DBH: pure P. densiflora (P100D0), 70% P. densiflora + 30% deciduous oak species (P70D30), 44% P. densiflora + 56% deciduous oak species (P50D50), 37% P. densiflora + 63% deciduous oak species (P40D60), and 10% P. densiflora + 90% deciduous oak species (P10D90). Total C contents in the overstory (aboveground and belowground) vegetation were higher in the mixed stands (P70D30, P50D50, P40D60) than in the pure stands (P100D0, P10D90). Moreover, except for P40D60, C contents of forest floor (litter and coarse woody debris) were larger in the mixed stands (P70D30, P50D50) than in the pure stands. However, total soil C contents up to 30cm depth were highest in the pure deciduous oak stand than in the pure P. densiflora stand and mixed stands. Total ecosystem C contents (Mg/ha) were 163.3 for P100D0, 152.3 for P70D30, 188.8 for P50D50, 160.2 for P40D60, and 150.4 for P10D90, respectively. These differences in total ecosystem C contents among the different mixed stands for P. densiflora and deciduous oak species within the study stands were attributed by the differences in vegetation development and forest management practices. Among the five study stands, the total ecosystem C contents were maximized in the 1:1 mixed ratio of P. densiflora and deciduous oak species (P50D50).

Effects of Debris Barrier on Community Structure and Functional Feeding Groups of the Benthic Macroinvertebrate (사방공작물의 시공이 저서성대형무척추동물의 군집구조 및 섭식기능군에 미치는 영향)

  • Seo, Jun-Pyo;Lee, Heon-Ho
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.3
    • /
    • pp.480-487
    • /
    • 2012
  • This study was conducted to search the effects of debris barrier on the benthic macroinvertebrate. Gimcheon was selected as the survey site as it has relatively stable ecosystem with constantly running water. The survey was conducted 6 times before and after the construction of debris barrier from February in 2009 to October in 2010. In the first survey before construction, the identified species were 36 species belonged to 22 families, 9 order, 4 class, and 4 phylum. The figure slightly decreased to 30 species belonged to 18 families, 7 order, 2 class, and 2 phylum in the sixth survey after construction. Before construction, occupation ratio of EPT taxa was showed in the following order: Ephemeroptera (50.0%, 85.0%), Trichoptera (35.3%, 10.0%), and Plecopteran (14.8%, 5.0%). After construction, it was showed in the following order: Trichoptera (50.3%, 68.0%), Ephemeroptera (42.1%, 29.4%), and Plecopteran (7.5%, 2.7%). Ephemeroptera was the highest before construction. Trichoptera increased rapidly after construction. The Diversity, Richness, Evenness, and Dominance indices were all turned low in the second survey right after the construction. However, each index tended to increase with the course of time. In Functional Feeding Groups, GC type was the highest of 60.7% before construction. After construction, SC(53.1%) and FC(35.4%) increased rapidly and they became stabilized since the third survey. The result of this study reveals that debris barrier greatly affects the Aquatic Ecosystem right after its construction, but the system becomes stable and returns to normal with the course of time (about 18 months). Therefore, the study considering various influence factors such as time is required to recover completely through further long-term monitoring.

Effects of Geological Structure and Tree Density on the Forest Fire Patterns (지형구조와 나무밀도가 산불패턴에 미치는 영향)

  • Song, Hark-Soo;Kwon, Oh Sung;Lee, Sang-Hee
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.259-266
    • /
    • 2014
  • Understanding the forest fire patterns is necessary to comprehend the stability of the forest ecosystems. Thus, researchers have suggested the simulation models to mimic the forest fire spread dynamics, which enables us to predict the forest damage in the scenarios that are difficult to be experimentally tested in laboratory scale. However, many of the models have the limitation that many of them did not consider the complicated environmental factors, such as fuel types, wind, and moisture. In this study, we suggested a simple model with the factors, especially, the geomorphological structure of the forest and two types of fuel. The two fuels correspond to susceptible tree and resistant tree with different probabilities of transferring fire. The trees were randomly distributed in simulation space at densities ranging from 0.5 (low) to 1.0 (high). The susceptible tree had higher value of the probability than the resistant tree. Based on the number of burnt trees, we then carried out the sensitivity analysis to quantify how the forest fire patterns are affected by the structure and tree density. We believe that our model can be a useful tool to explore forest fire spreading patterns.

Chemical Characteristics of Precipitation in Quercus Forests in Korea and Japan

  • Kim, Min Sik;Takenaka, Chisato;Park, Ho Taek;Chun, Kun Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.5
    • /
    • pp.503-509
    • /
    • 2007
  • The major objective of this study was to analyze the difference of the chemical characteristics of acid deposition in Quercus forests in Korea and Japan. The pH values of rainfall at the experimental forest of Kangwon National University (KS site) were higher than those at the Foresta Hills in Japan (JP site), and all chemical contents of throughfall and stemflow were much higher than those of rainfall in Quercus forest stands at the KS and JP site. The pH values, $Ca^{2+}$, $NO_3{^-}$ and $SO{_4}^{2-}$ concentration of throughfall and stemflow at the KS site showed seasonal variation. While at the JP site, the same pattern was shown in the pH values of throughfall and stemflow, however, did not show any difference among seasons. Also, the annual input of all nutrients in these two contrasting forests varied seasonally. These results can be used to predict the amounts of air pollutant that are washed off and leached by the rainfall and Yellow Sand (Asian dust), including NOx and SOx acid pollutants transported easterly from China in the spring. Therefore, it is necessary to quantify the inputs of dry and wet deposition throughout a full year to gain a more complete understanding of the effects of acid deposition on the nutrient cycles in these forest ecosystems.

Changing C-N Interactions in the Forest Floor under Chronic N Deposition: Implications for Forest C Sequestration

  • Park, Ji-Hyung
    • Journal of Ecology and Environment
    • /
    • v.31 no.3
    • /
    • pp.167-176
    • /
    • 2008
  • Atmospheric N deposition has far-reaching impacts on forest ecosystems, including on-site impacts such as soil acidification, fertilization, and nutrient imbalances, and off-site environmental impacts such as nitrate leaching and nitrous oxide emission. Although chronic N deposition has been believed to lead to forest N saturation, recent evidence suggests that N retention capacity, particularly in the forest floor, can be surprisingly high even under high N deposition. This review aims to provide an overview of N retention processes in the forest floor and the implications of changing C-N interactions for C sequestration. The fate of available N in forest soils has been explained by the competitive balance between tree roots, soil heterotrophs, and nitrifiers. However, high rates of N retention have been observed in numerous N addition experiments without noticeable increases in tree growth and soil respiration. Alternative hypotheses have been proposed to explain the gap between the input and loss of N in N-enriched, C-limited systems, including abiotic immobilization and mycorrhizal assimilation, both of which do not require additional C sources to incorporate N in soil N pools. Different fates of N in the forest floor have different implications for C sequestration. N-induced tree growth can enhance C accumulation in tree biomass as observed across temperate regions. C loss from forests can amount to or outweigh C gain in N-saturated, declining forests, while another type of 'C-N decoupling' can have positive or neutral effects on soil C sequestration through hampered organic matter decomposition or abiotic N immobilization, respectively.

Database Design for Management of Forest Resources using a Drone (드론을 이용한 산림자원 정보관리를 위한 DB 설계)

  • Oh, Sun Jin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.5 no.3
    • /
    • pp.251-256
    • /
    • 2019
  • With the fast development of modern society, the interests concerned about the significance of nature and environment become major issue nowadays. Especially, threats for our health due to severe environmental pollution and fine dusts become serious problem with the fast industrialization of our society, and extra attention is focused on interests about conservation of nature and management of forest resources. Precious forest resources, however, are not properly managed and destroyed vainly due to frequent fire, damage by storms and floods, and unplanned land development. So systematic and scientific construction and management of forest resources are required in order to solve these problems efficiently. Furthermore, implementation of the forest resource information database that contains information of trees, Topography, ecosystem of the forest is urgently needed. In this paper, we design and implement the forest resource information database based on the information of location based forest resources and Topography using forest images taken by a drone, that enables us to manage forest resources efficiently, make decision for logging, and construct a future tree-planting project easily.

A Review of Implementation of Policy Instruments on Forests Fire in Nepal

  • Ganesh Raj Joshi;Kedar Rijal;Rikita Bhandari;Ramesh Prasad Sapkota;Narayan Babu Dhital
    • Journal of Forest and Environmental Science
    • /
    • v.40 no.3
    • /
    • pp.167-179
    • /
    • 2024
  • Forest fire is one of the major disasters occurring in Nepal causing huge loss to the ecosystem, people and economy. They are mainly caused due to different anthropogenic activities. In Nepal, the forest fires occur during the dry season mainly from March to May. Nepal has roughly 29.5 percent forest area that are prone to forest fires and it is estimated that about 375 thousand hectares of forest were burned over one and half decade from 2000-2014. The forest fire risk is higher in the Terai and Siwalik regions than in any other region. To prevent and mitigate the forests fire incidences, the Government of Nepal has formulated and executed different policy instruments. In this regard, this paper aims to review the implementation of policies, strategies, Acts and regulations related to forest fire management at different levels of governance. Although federal and provincial governments' different policy instruments have considered forest fire and its management, these are not effectively implemented. It is not prioritized in terms of resource allocation, institutional capacity building, disaster preparedness and early warning. In addition, there are unclear and overlapping roles and responsibilities among three tiers of governments to effectively implement the policy provisions. Considering the consequences of the forest fire, governments at different levels need to devise an effective mechanism involving all stakeholders for implementing preventive and curative activities, strengthen institutions and build the capacity of human resources, and increase the level of resource allocation to implement the provisions of various legal and policy instruments.

Analysis of Vulnerable Regions of Forest Ecosystemin the National Parks based on Remotely-sensed Data (원격탐사자료에 기초한 국립공원 산림 생태계의 취약지역 분석)

  • Choi, Chul-Hyun;Koo, Kyung-Ah;Kim, Jinhee
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.5
    • /
    • pp.29-45
    • /
    • 2016
  • This study identified vulnerable regions in the national parks of the Republic of Korea (ROK). The potential vulnerable regions were defined as areas showing a decline in forest productivity, low resilience, and high sensitivity to climate variations. Those regions were analyzed with a regression model and trend analysis using the Enhanced Vegetation Index (EVI) data obtained from long-term observed Moderate Resolution Imaging Spectroradiometer (MODIS) and gridded meteorological data. Results showed the area with the highest vulnerability was Naejangsan National Park in the southern part of ROK where 32.5% ($26.0km^2$) of the total area was vulnerable. This result will be useful information for future conservation planning of forest ecosystem in ROK under environmental changes, especially climate change.

The study of mountain conservation and utilization

  • Lee, Sung-Gie
    • Journal of Environmental Science International
    • /
    • v.12 no.2
    • /
    • pp.157-162
    • /
    • 2003
  • Boeun-gun is hard to develop, because of large numbers of mountains and vast distribution of limited development districts. However it is easy to access from the entire country, and there are large conservation area such as national park and dams. Short-term plans such as attraction of tourists can be established using these advantages. Long-term plans can be planed with stable establishment of continuous considerations and supports. These supports will be rewarded while it demands some time and costs. Private owned mountains can be converted from negligence upkeep of property to utilization of mountains with basic consideration of mountain conservation. This may contribute the essential function of mountain.

Intraspecific Phylogeny of the Korean Water Deer, Hydropotes inermis argyropus (Artiodactyla, Cervidae)

  • Kim, Hye Ri;Kim, Eui Kyung;Jeon, Mi Gyung;Park, Yung Chul
    • Animal Systematics, Evolution and Diversity
    • /
    • v.31 no.2
    • /
    • pp.118-121
    • /
    • 2015
  • The water deer, Hydropotes inermis (Cervidae), is native to China and Korea and has two subspecies of the Chinese water deer (Hydropotes inermis inermis) and Korean water deer (Hydropotes inermis argyropus). To date, only the Korean water deer has been reported in South Korea. In this study, however, an intraspecific phylogeny and haplotype analysis based on mitochondrial cytochrome oxidase I indicated that both Korean and Chinese water deer are found in South Korea. The populations of the two Korean genetic lineages did not show distinct geographic distributions. Further morphological studies on the Korean water deer will be required to confirm its taxonomic status.