• Title/Summary/Keyword: forest dynamics

Search Result 238, Processing Time 0.023 seconds

Fine Root Biomass in Pinus densiflora Stands using Soil Core Sampling and Minirhizotrons (토양 코어 및 미니라이조트론을 이용한 소나무 임분의 세근 바이오매스 연구)

  • Han, Seung Hyun;Yoon, Tae Kyung;Han, Saerom;Yun, Soon Jin;Lee, Sun Jeoung;Kim, Seoungjun;Chang, Hanna;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.103 no.1
    • /
    • pp.37-42
    • /
    • 2014
  • Fine root distribution was investigated in Pinus densiflora stands using soil core sampling and minirhizotrons, and conversion factors and regression equations were developed for converting minirhizotron data into fine root biomass. Fine root biomass was measured by soil core sampling from October, 2012 to September, 2013 once a month except for the winter, and surface area of fine roots was estimated by minirhizotrons from May to August, 2013 once a month. Fine root biomass and surface area were significantly higher in the upper soil layers than in the lower soil layers. Fine root biomass showed seasonal patterns; the mean fine root biomass ($kg{\cdot}ha^{-1}$) in summer (3,762.4) and spring (3,398.0) was significantly higher than that in autumn (2,551.6). Vertical and seasonal patterns of fine root biomass might be related to the soil bulk density, nutrient content and temperature with soil depth, and seasonal changes of soil and air temperature. Conversion factors (CF) between fine root surface area from minirhizotron data and fine root biomass from soil core sampling were developed for the three soil depths. Then a linear regression equation was developed between the predicted fine root biomass using CF and the measured fine root biomass (y = 79.7 + 0.93x, $R^2=0.81$). We expect to estimate the long-term dynamics of fine roots using CF and regression equation for P. densiflora forests in Korea.

Ecological Characteristics of Fraxinus chiisanensis Nakai, an Endemic Plant of Korea (한국 특산식물 물들메나무의 생태적 특성)

  • Jeong-Seok Park;Shin-Young Kwon;Ju-hee Lee;Ji-Eun Byun;So-dam Kim;Seok-Min Yun;Ji-Young Jung
    • Korean Journal of Environment and Ecology
    • /
    • v.38 no.4
    • /
    • pp.375-387
    • /
    • 2024
  • This study investigated the ecological characteristics of Fraxinus chiisanensis Nakai, one of the endemic and rare plant species in Korea, based on its distribution status, characteristics of the growth environment, and species composition. A vegetation survey that analyzed the correlation between species distribution patterns and environmental variables, along with the traits of the emergent plant species, was performed according to the explanation of environmental growth conditions and phytosociological method for the location where F. chiisanensis is found. A total of 19 dominant locations and 9 non-dominant locations of F. chiisanensis were observed in 28 study sites in 12 regions, and a total of 155 taxa were observed. According to the vegetation climate of Korea, the growth environment of the study site where F. chiisanensis is located is characterized as cold and is primarily situated within the northern temperate deciduous broadleaf forest zone. The average elevation was 859m above sea level, with an average rock exposure of 60.4%, soil exposure of 24.7%, and an average slope of 18.7°. The taxa belonging to the top P-NCD(Percentage of Net Contribution Degree) among the emergent species were mostly designated as the taxa emerging in valley vegetation. The correlation analysis of environmental variables revealed that altitude had the strongest correlation, with rock exposure showing the second highest correlation. The ongoing dynamics of the F. chiisanensis forest are anticipated to persist due to the high P-NCD values exhibited by the F. chiisanensis within the shrub and herbaceous layers among the taxa associated with tree species. Most F. chiisanensis habitats are currently situated within protected regions such as national parks, provincial parks, and county parks, where there are relatively minimal human-induced disturbances. However, there is potential for damage in areas not designated as protected, such as forest tending operation sites or new hiking trails. Concerns about declining habitat quality have prompted suggestions for management strategies such as establishing Forest Genetic Resource Reserves in these locations. In addition, follow-up and further research should be conducted to identify possible sites for distribution and establish candidate conservation areas based on various environmental conditions of F. chiisanensis.

Gap characteristics and natural regeneration in Mt. Makiling rainforest, the Philippines

  • Kim, Hyun-Ji;Kim, Tae-Geun;Kim, Eun-Hee;Castillo, Manuel L.;Cho, Do-Soon
    • Journal of Ecology and Environment
    • /
    • v.34 no.2
    • /
    • pp.157-165
    • /
    • 2011
  • This study was conducted to determine the characteristics of gaps and natural regeneration of trees on Mt. Makiling, the Philippines. Canopy gaps in or around two 1-ha permanent plots and on 3-km line transects were investigated. Most of the gaps studied were formed or affected by Typhoon Milenyo, which hit the study site in September 2006. The most frequent mode of gap maker death was snap-off, whereas uprooting was relatively less important. The most frequent gap maker was balobo (Diplodiscus paniculatus) followed by magabuyo (Celtis luzonica) and katmon (Dillenia philippinensis). In contrast, the most frequent gap filler was magabuyo (C. luzonica). At the sapling layer, the most important species was magabuyo (C. luzonica), but there was a high proportion of lianas and palms. Most of the gaps had leaf area index (LAI) values between 3 and 5. A clear trend of a decrease in gap size and an increase in LAI was observed for 2 years from 2007 to 2009. New seedlings emerged very abundantly during the same time period. The rapid changes in the gaps were partially due to the excellent capability of tropical trees to resprout after the crown or stem was damaged by the typhoon. This study on gap dynamics may contribute to a better understanding of the natural regeneration process of trees in tropical rainforests.

Simulation of Daily Soil Moisture Content and Reconstruction of Drought Events from the Early 20th Century in Seoul, Korea, using a Hydrological Simulation Model, BROOK

  • Kim, Eun-Shik
    • Journal of Ecology and Environment
    • /
    • v.33 no.1
    • /
    • pp.47-57
    • /
    • 2010
  • To understand day-to-day fluctuations in soil moisture content in Seoul, I simulated daily soil moisture content from 1908 to 2009 using long-term climatic precipitation and temperature data collected at the Surface Synoptic Meteorological Station in Seoul for the last 98 years with a hydrological simulation model, BROOK. The output data set from the BROOK model allowed me to examine day-to-day fluctuations and the severity and duration of droughts in the Seoul area. Although the soil moisture content is highly dependent on the occurrence of precipitation, the pattern of changes in daily soil moisture content was clearly quite different from that of precipitation. Generally, there were several phases in the dynamics of daily soil moisture content. The period from mid-May to late June can be categorized as the initial period of decreasing soil moisture content. With the initiation of the monsoon season in late June, soil moisture content sharply increases until mid-July. From the termination of the rainy season in mid-July, daily soil moisture content decreases again. Highly stochastic events of typhoons from late June to October bring large amount of rain to the Korean peninsula, culminating in late August, and increase the soil moisture content again from late August to early September. From early September until early October, another sharp decrease in soil moisture content was observed. The period from early October to mid-May of the next year can be categorized as a recharging period when soil moisture content shows an increasing trend. It is interesting to note that no statistically significant increase in mean annual soil moisture content in Seoul, Korea was observed over the last 98 years. By simulating daily soil moisture content, I was also able to reconstruct drought phenomena to understand the severity and duration of droughts in Seoul area. During the period from 1908 to 2009, droughts in the years 1913, 1979, 1939, and 2006 were categorized as 'severe' and those in 1988 and 1982 were categorized as 'extreme'. This information provides ecologists with further potential to interpret natural phenomenon, including tree growth and the decline of tree species in Korea.

Population Structure and Growth Dynamics of Dendropanax morbifera Lev.(Araliaceae) in Mt. Halla (한라산 황칠나무 집단의 구조 및 생육동태)

  • 김세현;정헌관;장용석;김선창
    • Korean Journal of Plant Resources
    • /
    • v.17 no.3
    • /
    • pp.248-256
    • /
    • 2004
  • Dendropanax morbifera Lev.(Araliaceae), Korean endemic and evergreen small tree is a component of evergreen forest and mainly distributed in sourthern region and islands in Korea. The ecological characteristics of 4 natural stands of D. morbifera.(Sundol, Suak, Hannam, and Sangho populations in Cheju island) were studied. In most of the D. morbifera natural stands, the following tree species appeared predominantly: Castanopsis cuspidata var. sieboldii, Carpinus laxiflora, D. morbifera, Quercus glauca, Quercus myrsinaefolia, Camellia japonica, and Acer pseudo-sieboldianum. Two tree species, such as C. cuspidata var. sieboldii and C. laxiflora appeared in the all investigated stands. D. morbifera occupied 17.2% of the upper story, 12.9% of the middle story, and 10.3% of the lower story, respectively. The distribution patterns by Morisita' s Index showed that D. morbifera was distributed randomly in the three stories. The frequency distribution of DBH D. morbifera species showed reverse J-shaped, therefore it seems to remain as a dominant species.

Vegetation Structure, Regeneration Niche, and Dynamics of the Saplings in Abies koreana Forest of the Mt. Chiri (지리산(智異山) 구상나무임분(林分)의 식생구조(植生構造)와 치수(稚樹) 발생(發生) 및 생육(生育) 동태(動態))

  • Chung, Jae Min;Lee, Soo Won;Lee, Kang Young
    • Journal of Korean Society of Forest Science
    • /
    • v.85 no.1
    • /
    • pp.34-43
    • /
    • 1996
  • We investigated the vegetation structure, and effects of canopy degree(gap or purlieu to 25%, 50%, 75%, over 75%) of the overstory on seedling regeneration and survivorship, and sapling density, growth and growth type of Abies koreana in subalpine of Mt. Chiri. The stem density in Abies koreana stand was higher in middle story than upper story, individual trees in upper story occupied larger area and were more apart, resulted in uniform distribution. The regeneration and survivorship of seedlings and saplings were best in 25% of crown closure, in order of 50%, gap, but lowest in over 75% of crown closure. The annual growth rate and recent 5 years growth rate of saplings were highest in gap or purlieu and getting lower toward gradually higher coverage of overstory. And 10- to 20-Year-old saplings were mainly regenerated in stands with lower density(I or II), but most of 20 to 30 years old saplings were growing in stands with higher density (III or IV). The number of "A" type saplings grown normally in gap or purlieu was gradually decreased in stand with higher density but the number of "D" or "E" types of which growth was supressed or prohibited by the high density was abruptly increased. Saplings normally growing in the gap and purlieu showed the panicle type, but those grown under dense crown were greatly suppressed and showed the umbellate type.

  • PDF

A Comparative Study of Vegetation Phenology Using High-resolution Sentinel-2 Imagery and Topographically Corrected Vegetation Index (고해상도 Sentinel-2 위성 자료와 지형효과를 고려한 식생지수 기반의 산림 식생 생장패턴 비교)

  • Seungheon Yoo;Sungchan Jeong
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.26 no.2
    • /
    • pp.89-102
    • /
    • 2024
  • Land Surface Phenology (LSP) plays a crucial role in understanding vegetation dynamics. The near-infrared reflectance of vegetation (NIRv) has been increasingly adopted in LSP studies, being recognized as a robust proxy for gross primary production (GPP). However, NIR v is sensitive to the terrain effects in mountainous areas due to artifacts in NIR reflectance cannot be canceled out. Because of this, estimating phenological metrics in mountainous regions have a substantial uncertainty, especially in the end of season (EOS). The topographically corrected NIRv (TCNIRv) employs the path length correction (PLC) method, which was deduced from the simplification of the radiative transfer equation, to alleviate limitations related to the terrain effects. TCNIRv has been demonstrated to estimate phenology metrics more accurately than NIRv, especially exhibiting improved estimation of EOS. As the topographic effect is significantly influenced by terrain properties such as slope and aspect, our study compared phenology metrics estimations between south-facing slopes (SFS) and north-facing slopes (NFS) using NIRv and TCNIRv in two distinct mountainous regions: Gwangneung Forest (GF) and Odaesan National Park (ONP), representing relatively flat and rugged areas, respectively. The results indicated that TCNIR v-derived EOS at NFS occurred later than that at SFS for both study sites (GF : DOY 266.8/268.3 at SFS/NFS; ONP : DOY 262.0/264.8 at SFS/NFS), in contrast to the results obtained with NIRv (GF : DOY 270.3/265.5 at SFS/NFS; ONP : DOY 265.0/261.8 at SFS/NFS). Additionally, the gap between SFS and NFS diminished after topographic correction (GF : DOY 270.3/265.5 at SFS/NFS; ONP : DOY 265.0/261.8 at SFS/NFS). We conclude that TCNIRv exhibits discrepancy with NIR v in EOS detection considering slope orientation. Our findings underscore the necessity of topographic correction in estimating photosynthetic phenology, considering slope orientation, especially in diverse terrain conditions.

Development of New Variables Affecting Movie Success and Prediction of Weekly Box Office Using Them Based on Machine Learning (영화 흥행에 영향을 미치는 새로운 변수 개발과 이를 이용한 머신러닝 기반의 주간 박스오피스 예측)

  • Song, Junga;Choi, Keunho;Kim, Gunwoo
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.67-83
    • /
    • 2018
  • The Korean film industry with significant increase every year exceeded the number of cumulative audiences of 200 million people in 2013 finally. However, starting from 2015 the Korean film industry entered a period of low growth and experienced a negative growth after all in 2016. To overcome such difficulty, stakeholders like production company, distribution company, multiplex have attempted to maximize the market returns using strategies of predicting change of market and of responding to such market change immediately. Since a film is classified as one of experiential products, it is not easy to predict a box office record and the initial number of audiences before the film is released. And also, the number of audiences fluctuates with a variety of factors after the film is released. So, the production company and distribution company try to be guaranteed the number of screens at the opining time of a newly released by multiplex chains. However, the multiplex chains tend to open the screening schedule during only a week and then determine the number of screening of the forthcoming week based on the box office record and the evaluation of audiences. Many previous researches have conducted to deal with the prediction of box office records of films. In the early stage, the researches attempted to identify factors affecting the box office record. And nowadays, many studies have tried to apply various analytic techniques to the factors identified previously in order to improve the accuracy of prediction and to explain the effect of each factor instead of identifying new factors affecting the box office record. However, most of previous researches have limitations in that they used the total number of audiences from the opening to the end as a target variable, and this makes it difficult to predict and respond to the demand of market which changes dynamically. Therefore, the purpose of this study is to predict the weekly number of audiences of a newly released film so that the stakeholder can flexibly and elastically respond to the change of the number of audiences in the film. To that end, we considered the factors used in the previous studies affecting box office and developed new factors not used in previous studies such as the order of opening of movies, dynamics of sales. Along with the comprehensive factors, we used the machine learning method such as Random Forest, Multi Layer Perception, Support Vector Machine, and Naive Bays, to predict the number of cumulative visitors from the first week after a film release to the third week. At the point of the first and the second week, we predicted the cumulative number of visitors of the forthcoming week for a released film. And at the point of the third week, we predict the total number of visitors of the film. In addition, we predicted the total number of cumulative visitors also at the point of the both first week and second week using the same factors. As a result, we found the accuracy of predicting the number of visitors at the forthcoming week was higher than that of predicting the total number of them in all of three weeks, and also the accuracy of the Random Forest was the highest among the machine learning methods we used. This study has implications in that this study 1) considered various factors comprehensively which affect the box office record and merely addressed by other previous researches such as the weekly rating of audiences after release, the weekly rank of the film after release, and the weekly sales share after release, and 2) tried to predict and respond to the demand of market which changes dynamically by suggesting models which predicts the weekly number of audiences of newly released films so that the stakeholders can flexibly and elastically respond to the change of the number of audiences in the film.

Late Holocene Environment and Vegetation Change of Eurimji Reservoir, Jecheon, Korea (홀로세말 의림지 호소환경과 식생변천 고찰)

  • Kang, Sang-Joon;Yi, Sang-Heon;Kim, Ju-Yong
    • The Korean Journal of Quaternary Research
    • /
    • v.23 no.2
    • /
    • pp.34-47
    • /
    • 2009
  • AMS radiocarbon dates indicated that Eurimji reservoir, located at Jecheon City, Chungbuk Province, has been formed during the late Holocene Epoch. The sedimentary sequence at bottom reveals histories in hydrology, climate conditions and past vegetation dynamics. Ages controlled sedimentological and palynological analyses on ER 3-1 Core contribute to reconstruct paleoclimate and past hydrological conditions. These analyses suggest that lower interval (307.5m~309.5m elevations) of the ER 3-1 Core was deposited in stable from 1,920 yrBP to 1,420 yrBP, but upper layer sediment above these elevations was composed of reworked sediments during the pre and post 2,000 yrBP. Pollen assemblage indicates that watershed vegetation of the Eurimji reservoir, during the period of 1,920 yrBP~1,420 yrBP, was closely comparable to modern vegetation dominated Pinus and Quercus mixed vegetation. Also, riparian including Alnus, Fraxinus and Salix were inhabited along the banks of stream, and aquatics such as Typha, Nymphaea and Persicaria flourished at shore of the reservoir. According to cultural chronicle, it infers that the Eurimji reservoir was formed from the Bronze Age to the Iron Age or the beginning of ancient society. An integrated data suggested that Quercus-Pinus-Abies mixed forest flourished under cool and dry climate conditions during 3,200 yrBP~200 yrBP.

  • PDF

The long-term decay rate and nutrient dynamics during leaf litter decomposition of Pinus densiflora and Pinus thunbergii (한반도 중부지역 조림지 소나무와 곰솔의 장기적 낙엽 분해율 및 분해과정에 따른 영양염류 동태변화)

  • Lee, Il-hwan;Jo, Soo-un;Lee, Young-sang;Won, Ho-yeon
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.3
    • /
    • pp.374-382
    • /
    • 2021
  • In the present study, we analyzed the decay rate and nutrient dynamics during leaf litter decomposition of Pinus densiflora and Pinus thunbergii in Gongju for 60 months, from 2014 to 2019. P. thunbergii leaf litter decomposed faster than that of P. densiflora. The decay constant of P. densiflora and P. thunbergii leaf litter after 60 months was 3.02 and 3.59, respectively. The initial C/N ratio of P. densiflora and P. thunbergii leaf litter were 14.4 and 14.5, respectively. After 60 months, C/N ratio of decomposing P. densiflora and P. thunbergii leaf litter decreased to 2.26 and 3.0, respectively. The initial C/P ratio of P. densiflora and P. thunbergii leaf litter were 144.1 and 111.3. After 60 months elapsed, the C/P ratio of decomposing P. densiflora and P. thunbergii leaf litter decreased to 40.1 and 45.8, respectively. After 60 months, the percentage of the remaining N, P, K, Ca, and Mg in decomposing P. densiflora leaf litter was 231.08, 130.13, 35.68, 48.58, and 36.03%, respectively. After 60 months, the percentage of the remaining N, P, K, Ca, and Mg in decomposing P. thunbergii leaf litter was 143.91, 74.02, 28.59, 45.08, and 44.99%, respectively. The findings of the present study provide an insight into the forest ecosystem function of coniferous forests through the analysis of the amount of nutrient transfer into the soil through a long-term decomposition process; this information is intended to be used as basic data for preparing counter measures for future climate and ecosystem changes.