Journal of Korean Society of Industrial and Systems Engineering
/
v.38
no.1
/
pp.52-64
/
2015
Korea ocean research stations manage the weather and environmental data collected from coastal and ocean areas to provide short-term and long-term ocean forecasts. The purpose of this paper is to analyze and quantify economic benefits of the ocean research stations with sensors to observe physical, chemical, and biological data. The construction and operation of an integrated ocean observation station is expected to reduce uncertainty about ocean and coastal areas and to improve the quality of ocean forecasts. The economic benefits are mainly come from improved search and rescue operations, ocean pollution management, yellow dust management, and improved productivity in ocean-related industries. In addition, an input-output analysis is performed to evaluate the economic impacts of ocean research stations nationwide. The analysis shows that the system can contribute to industries such as fishing, maritime and air cargo, medical and health care.
The Transactions of The Korean Institute of Electrical Engineers
/
v.65
no.7
/
pp.1144-1150
/
2016
Short-term load forecasting is essential to the electricity pricing and stable power system operations. The conventional weekday 24-hour load forecasting algorithms consider the temperature model to forecast maximum load and minimum load. But 24-hour load pattern forecasting models do not consider temperature effects, because hourly temperature forecasts were not present until the latest date. Recently, 3 hour temperature forecast is announced, therefore hourly temperature forecasts can be produced by mathematical techniques such as various interpolation methods. In this paper, a new 24-hour load pattern forecasting method is proposed by using similar day search considering the hourly temperature. The proposed method searches similar day input data based on the anomalous weather features such as continuous temperature drop or rise, which can enhance 24-hour load pattern forecasting performance, because it uses the past days having similar hourly temperature features as input data. In order to verify the effectiveness of the proposed method, it was applied to the case study. The case study results show high accuracy of 24-hour load pattern forecasting.
Proceedings of the Korea Inteligent Information System Society Conference
/
2000.11a
/
pp.427-436
/
2000
The prediction of stock price index is a very difficult problem because of the complexity of the stock market data it data. It has been studied by a number of researchers since they strong1y affect other economic and financial parameters. The movement of stock price index has a series of change points due to the strategies of institutional investors. This study presents a two-stage forecasting model of stock price index using change-point detection and artificial neural networks. The basic concept of this proposed model is to obtain Intervals divided by change points, to identify them as change-point groups, and to use them in stock price index forecasting. First, the proposed model tries to detect successive change points in stock price index. Then, the model forecasts the change-point group with the backpropagation neural network (BPN). Fina1ly, the model forecasts the output with BPN. This study then examines the predictability of the integrated neural network model for stock price index forecasting using change-point detection.
Kim, Eun-Hee;Jo, Youngsoon;Lee, Eunhee;Lee, Yong Hee
Atmosphere
/
v.31
no.3
/
pp.251-265
/
2021
This study examined the impact of assimilating the bending angle (BA) obtained via the global navigation satellite system radio occultation (GNSS RO) of the three new satellites (KOMPSAT-5, FY-3C, and FY-3D) on analyses and forecasts of a numerical weather prediction model. Numerical data assimilation experiments were performed using a three-dimensional variational data assimilation system in the Korean Integrated Model (KIM) at a 25-km horizontal resolution for August 2019. Three experiments were designed to select the height and quality control thresholds using the data. A comparison of the data with an analysis of the European Centre for Medium-Range Weather Forecasts (ECMWF) integrated forecast system showed a clear positive impact of BA assimilation in the Southern Hemisphere tropospheric temperature and stratospheric wind compared with that without the assimilation of the three new satellites. The impact of new data in the upper atmosphere was compared with observations using the infrared atmospheric sounding interferometer (IASI). Overall, high volume GNSS RO data helps reduce the RMSE quantitatively in analytical and predictive fields. The analysis and forecasting performance of the upper temperature and wind were improved in the Southern and Northern Hemispheres.
It has been reported that there is a significant positive relationship between the unexpected earnings on the earnings announcement date and the cumulative abnormal returns following the earnings announcement date. This study investigates whether the results of prior studies are because the public announcement of shareholders' meeting date was selected as the event date instead of either the preliminary earnings disclosure date or the profit/loss change announcement date. The results of this study are as follows. First, post-earnings-announcement drift(PEAD) occurs when unexpected earnings were computed based on the prior period earnings and the public announcement of the shareholders' meeting date as the profit disclosure date. Second, when analyzing the PEAD with the unexpected earnings calculated using the financial analysts' forecasts, no PEAD has been found both on the date of the shareholders' meeting and the earlier date of the preliminary earnings disclosure, profit/loss change announcement, or the public announcement of the shareholders' meeting. Foster et al. (1984) analyze the PEAD using time series model and earnings forecasting model and suggest that the PEAD appears only in the time series model. In this study, too, in the case of using analysts' profit forecasts, the lack of the PEAD shows that the PEAD can be changed according to the method of measuring the unexpected earnings.
In response to the rapid climate change, in order to save energy in the field of buildings, the country is planning not only zero energy buildings but also zero energy cities. In the Urban Development Project, the Energy Use Plan Report is prepared and submitted by predicting the amount of energy demand at the planning stage. However, due to the activation of zero-energy buildings and the increase in the supply of new and renewable energy facilities, the energy consumption behavior of buildings in the city is changing from the previous ones. In this study, to estimate urban energy demand of Zero Energy City, building energy demand forecasts based on "Passive plans for use of energy based primary energy consumption", "Actual building energy usage data from Korea Appraisal Board" and "data from Certification of Building Energy Efficiency Rating" as well as demand forecast according to existing "Consultation about Energy Use Plan Code" were calculated and then applied to Multifunctional Administrative City 5-1 zone to compare urban total energy demand forecasts.
Journal of the Korean Society of Industry Convergence
/
v.24
no.3
/
pp.323-331
/
2021
With global warming and pollution problems, accurate forecasting of the harmful gases would be an essential alarm in our life. In this paper, we forecast the emission of the five gases(SOx, NO2, NH3, H2S, CH4) using the time series model of ARIMA, the learning algorithms of Random forest, and LSTM. We find that the gas emission data depends on the short-term memory and behaves like a random walk. As a result, we compare the RMSE, MAE, and MAPE as the measure of the prediction performance under the same conditions given to three models. We find that ARIMA forecasts the gas emissions more precisely than the other two learning-based methods. Besides, the ARIMA model is more suitable for the real-time forecasts of gas emissions because it is faster for modeling than the two learning algorithms.
Purpose - This study attempted to predict short-term transportation demand using trains and getting off at Gangchon Station. Through this, we present numerical data necessary for future tourist inflow policies in the Gangchon area of Chuncheon and present related implications. Design/methodology/approach - This study collected and analyzed transportation demand data from Gangchon Station using the Gyeongchun Line and ITX-Cheongchun Train from January 2014 to August 2023. Winters exponential smoothing model and ARIMA model were used to reflect the trend and seasonality of the raw data. Findings - First, transportation demand using trains to get off at Gangchon Station in Chuncheon City is expected to show a continuous increase from 2020 until the forecast period is 2024. Second, the number of passengers getting off at Gangchon Station was found to be highest in May and October. Research implications or Originality - As transportation networks are improving nationwide and people's leisure culture is changing, the number of tourists visiting the Gangchon area in Chuncheon City is continuously decreasing. Therefore, in this study, a time series model was used to predict short-term transportation demand alighting at Gangchon Station. In order to calculate more accurate forecasts, we compared models to find an appropriate model and presented forecasts.
Radiosonde is an important in-situ profiling instrument that measures atmospheric temperature, moisture, and wind structure from the surface to the middle stratosphere. The operational radiosonde measurements are carried out more than twice (at 0000 UTC and 1200 UTC) daily at approximately 1,300 World Meteorological Organization (WMO) stations and play a pivotal role in daily weather forecasts. It also contributes to the monitoring of atmospheric structure by providing the key physical information like temperature and pressure, forming the backbone of atmospheric (re)analyses and numerical weather forecasts. Additionally, high-resolution radiosonde profiles are used for calibration and evaluation of satellite products. Despite these advantages, radiosonde measurements are mostly limited to operational uses due to the high initial cost of ground instrument setup required for data transmission and reception. This study outlines a cost-effective (roughly one-tenth of the operational cost) method for establishing the ground station and the necessary radiosonde measurement procedures, offering guidance for individual researchers or university-level instructors.
Kim, Soo-Ock;Kim, Dae-Jun;Kim, Jin-Hee;Yun, Jin I.
Korean Journal of Agricultural and Forest Meteorology
/
v.15
no.2
/
pp.76-84
/
2013
An adequate downscaling of the official forecasts of Korea Meteorological Administration (KMA) is a prerequisite to improving the value and utility of agrometeorological information in rural areas, where complex terrain and small farms constitute major features of the landscape. In this study, we suggest a simple correction scheme for scaling down the KMA temperature forecasts from mesoscale (5 km by 5 km) to the local scale (30 m by 30 m) across a rural catchment, especially under temperature inversion conditions. The study area is a rural catchment of $50km^2$ area with complex terrain and located on a southern slope of Mountain Jiri National Park. Temperature forecasts for 0600 LST on 62 days with temperature inversion were selected from the fall 2011-spring 2012 KMA data archive. A geospatial correction scheme which can simulate both cold air drainage and the so-called 'thermal belt' was used to derive the site-specific temperature deviation across the study area at a 30 m by 30 m resolution from the original 5 km by 5 km forecast grids. The observed temperature data at 12 validation sites within the study area showed a substantial reduction in forecast error: from ${\pm}2^{\circ}C$ to ${\pm}1^{\circ}C$ in the mean error range and from $1.9^{\circ}C$ to $1.6^{\circ}C$ in the root mean square error. Improvement was most remarkable at low lying locations showing frequent cold pooling events. Temperature prediction error was less than $2^{\circ}C$ for more than 80% of the observed inversion cases and less than $1^{\circ}C$ for half of the cases. Temperature forecasts corrected by this scheme may accelerate implementation of the freeze and frost early warning service for major fruits growing regions in Korea.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.