• 제목/요약/키워드: forecasting the market size

검색결과 44건 처리시간 0.032초

Samsung's $4^{th}$ Generation TFT- LCD Production Line Concept

  • Chang, Won-Kie
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2001년도 International Meeting on Information Display
    • /
    • pp.9-12
    • /
    • 2001
  • With the explosive growth of Note-PC and Desktop monitor market, TFT LCD market confronted a entire supply shortage during 1999. Forecasting a more booming stage for the next several years, many TFT-LCD panel manufacturers continue to expand the capacity of their existing plants and also make an additional investment in building new plants. The new investment is concentrated on the $4^{th}$ generation TFT LCD line in order to improve investment efficiency. The set up of the Samsung's Gen 3.5 line progressed with satisfactorily performance using $600{\times}720mm$ glass size. We have continuously reviewed several issues regarding the glass size for our next Gen. 4 line, which leads to adopt $730{\times}920mm$. Due to the continuous enlargement of a substrate size and following difficulty in transferring cassettes, the next line is expected to be the last line that employs "cassette transfer". The layout of the next line will shift from conventional "concentration-type" to "separation-type" configuration for the purpose of reducing transfer distance as well as transfer time. The details will be discussed in this paper.

  • PDF

BASS 확산 모형을 이용한 국내 자동차 외장 램프 LED 수요예측 분석 (Domestic Automotive Exterior Lamp-LEDs Demand and Forecasting using BASS Diffusion Model)

  • 이재흔
    • 품질경영학회지
    • /
    • 제50권3호
    • /
    • pp.349-371
    • /
    • 2022
  • Purpose: Compared to the rapid growth rate of the domestic automotive LED industry so far, the predictive analysis method for demand forecasting or market outlook was insufficient. Accordingly, product characteristics are analyzed through the life trend of LEDs for automotive exterior lamps and the relative strengths of p and q using the Bass model. Also, future demands are predicted. Methods: We used sales data of a leading company in domestic market of automotive LEDs. Considering the autocorrelation error term of this data, parameters m, p, and q were estimated through the modified estimation method of OLS and the NLS(Nonlinear Least Squares) method, and the optimal method was selected by comparing prediction error performance such as RMSE. Future annual demands and cumulative demands were predicted through the growth curve obtained from Bass-NLS model. In addition, various nonlinear growth curve models were applied to the data to compare the Bass-NLS model with potential market demand, and an optimal model was derived. Results: From the analysis, the parameter estimation results by Bass-NLS obtained m=1338.13, p=0.0026, q=0.3003. If the current trend continues, domestic automotive LED market is predicted to reach its maximum peak in 2021 and the maximum demand is $102.23M. Potential market demand was $1338.13M. In the nonlinear growth curve model analysis, the Gompertz model was selected as the optimal model, and the potential market size was $2864.018M. Conclusion: It is expected that the Bass-NLS method will be applied to LED sales data for automotive to find out the characteristics of the relative strength of q/p of products and to be used to predict current demand and future cumulative demand.

자기조직화 지도를 활용한 성장모형 기반의 시장 성장패턴 지도 구축: ICT제품을 중심으로 (Development of Market Growth Pattern Map Based on Growth Model and Self-organizing Map Algorithm: Focusing on ICT products)

  • 박도형;정재권;정여진;이동원
    • 지능정보연구
    • /
    • 제20권4호
    • /
    • pp.1-23
    • /
    • 2014
  • 시장 예측은 일정 기간 동안 소비자에게 판매되는 동종 제품 또는 서비스의 수량 혹은 매출액의 규모를 추정하는 활동으로 정의할 수 있다. 정확한 시장 예측은 기업의 입장에서 새로운 제품의 도입시기 결정, 제품 설계, 생산계획 수립, 마케팅 전략 수립 등에 활용됨으로써 경영활동에 있어 효율적인 의사결정을 내릴 수 있게 하고, 정부의 입장에서는 발전 가능성이 있는 분야에 국가예산을 더 배분할 수 있는 효율적인 예산수립이 가능하게 한다. 본 연구는 정보통신기술(Information and Communication Technology: ICT) 분야의 제품 및 서비스에 대해서 과거의 시계열 자료를 이용하여 시장 성장곡선을 도출하고, 성장패턴이 비슷한 그룹으로 분류하여, 산업 내 시장에 대해 이해하고, 제품들의 미래 전망을 예측하는 데 목적이 있다. 다양한 아이템들을 통일되고 일관적인 방법으로 예측하기 위하여, 로지스틱 모형, 곰페르츠 모형, Bass 모형의 세 가지 전통적인 성장모형과 로지스틱 모형이나 곰페르츠 모형에서 도출되는 잠재시장 크기를 Bass 모형에 결합시킨 두 가지 하이브리드 성장모형을 개발하여 비교 분석하였다. 데이터 설명력이 우수한 로지스틱 + Bass 모형을 최적의 모형으로 선정하여 ICT 제품 및 서비스들 각각의 시장 성장곡선 모수를 확인하였다. 도출된 모수를 데이터로 하여, 자기조직화 지도 알고리즘을 통해, 5개의 의미 있는 영역으로 구분된 시장 성장패턴 지도가 구축되었는데, 각 영역별로 차별화된 특징과 성장패턴을 가지고 있었다. 본 연구에서 제안한 프로세스 및 시스템은 산업 시장 분석 시스템의 수요 예측 기능으로 활용될 수 있으며, ICT 산업뿐만 아니라 다양한 산업 및 분야에도 적용 가능할 것으로 기대된다.

A study on the evaluation of and demand forecasting for real estate using simple additive weighting model: The case of clothing stores for babies and children in the Bundang area

  • Ryu, Tae-Chang;Lee, Sun-Young
    • 유통과학연구
    • /
    • 제10권11호
    • /
    • pp.31-37
    • /
    • 2012
  • Purpose - This study was conducted under the assumption that brand A, a store of company Z of Pangyo, with a new store at Pangyo station is targeting the Bundang-gu area of the newly developed city of Seongnam. Research design, data, methodology - As a result of demand forecasting using geometric series models, an extrapolation of past trends provided the coefficient estimates, without utilizing regression analysis on a constant increase in children's wear, for which the population size and estimated parameter were required. Results - Demand forecasting on the basis of past trends indicates the likelihood that sales of discount stores in the Bundang area, where brand A currently has a presence, would fetch a higher estimated value than that of the average discount store in the country during 2015. If past trends persist, future sales of operational stores are likely to increase. Conclusions - In evaluating location using the simple weighting model, Seohyun Lotte Mart obtained a high rating amongst new stores in Pangyo, on the basis of accessibility, demand class, and existing stores. Therefore, when opening a new counter at a relevant store, a positive effect can be predicted.

  • PDF

텔레매틱스 중기 인력 수요 예측 연구 (A Study on the Mid-term Man Power Demand Forecasting for the Telematics Industry in Korea)

  • 양영규;황보택근;김동선
    • 한국공간정보시스템학회 논문지
    • /
    • 제7권1호
    • /
    • pp.3-11
    • /
    • 2005
  • 본 과제는 정통부가 839 IT 신 성장 동력으로 추진 중인 텔레매틱스를 주 대상으로 한 무선공간정보서비스 기술 개발 사업을 성공적으로 수행하기 위해 필요한 최적의 인력을 예측하는 기법을 제시하고 2004년부터 2008년까지의 중기 인력 수요를 예측하는데 그 목적이 있다. 텔레매틱스 인력수요 예측을 위하여 한국의 현실에 적합한 인력 수요예측 모델을 제시하였다. 인력 수요 예측은 국내외 전문 기관들이 조사한 텔레매틱스 산업 추정치와 1인당 노동생산성을 감안하여 분야별 전체 인력수요 전망 구하였다. 또한 실태조사에서 도출된 분야별 직종별 취업구조 등을 적용하여 분야별 직종별 인력 수요를 도출한 후 이에 평균 탈락율을 감안하여 연도별 신규 인력 수요를 도출하였다.

  • PDF

토지이용특성을 고려한 서울시 교통사고 발생 모형 개발 (Development of Traffic Accident Models in Seoul Considering Land Use Characteristics)

  • 임삼진;박준태
    • 한국재난정보학회 논문집
    • /
    • 제9권1호
    • /
    • pp.30-49
    • /
    • 2013
  • 본 연구에서는 토지이용에 기반을 두는 새로운 교통사고 예측모형을 개발하였다. 다양한 지역의 특성을 반영할 수 있는 변수에 대한 시장분할 및 추가변수 도입을 토대로 Data Mining 기법의 하나인 의사나무결정법(Classification and Regression Tree)을 활용하여 새로운 유형별 교통사고 예측모형을 개발하였다. 분석결과를 살펴보면 주민등록인구수, 통근 등 활동변수와 활동의 대상이 되는 도로규모, 유발시설 등이 교통사고를 설명하는 변수로 도출되었다.

케이프선 시장 운임의 결정요인 및 운임예측 모형 분석 (An Analysis on Determinants of the Capesize Freight Rate and Forecasting Models)

  • 임상섭;윤희성
    • 한국항해항만학회지
    • /
    • 제42권6호
    • /
    • pp.539-545
    • /
    • 2018
  • 운임시장의 심한 변동성과 시계열 데이터의 불안정성으로 해운시황 예측에 대한 연구가 큰 성과를 내지 못하고 있지만 최근 대표적인 비선형 모델인 기계학습모델을 적용한 연구들이 활발히 진행되고 있다. 대부분의 기존 연구가 계량모델의 설계단계에서 입력변수에 해당하는 요인들을 기존 문헌연구와 연구자의 직관에 의존하여 선정했기 때문에 요인선정에 대한 체계적인 연구가 필요하다. 본 연구에서는 케이프선 운임을 대상으로 단계적 회귀모형과 랜덤포레스트모델을 이용하여 중요 영향요인을 분석하였다. 해운시장에서 비교적 단순한 수급구조를 가져 요인파악이 용이한 케이프선 운임을 대상으로 하였으며 총 16개의 수급요인들을 사전 추출하였다. 요인간의 상호관련성을 파악하여 단계적 회귀는 8개 요인, 랜덤포레스트는 10개 요인을 분석대상으로 선정하였으며 선정된 변수를 입력변수로 하여 예측한 결과를 비교하였다. 랜덤포레스트의 예측성능이 아주 우수하였는데 수요요인이 주로 선정된 단계적 회귀분석과는 달리 공급요인이 비중 있게 선정되었기 때문인 것으로 판단된다. 본 연구는 운임예측 연구에 있어 운임결정요인에 대한 과학적인 근거를 마련하였으며 이를 위해 기계학습 기반의 모델을 활용하였다는데 연구적 의의가 있다. 또한 시장정보의 분석에 있어 실무자들이 어떤 변수에 중점을 두어야 하는지에 대해 합리적 근거를 제시한 측면에서 해운기업의 의사결정에 실질적 도움이 될 것으로 기대된다.

신재생에너지 보급확대에 따른 국내전력시장 운영방안 (The improvement in operating rules of Cost Based Pool(CBP) considering the increasing Renewable Energy Capacity)

  • 이재걸;남수철;신정훈;김태균
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.580-583
    • /
    • 2008
  • As the construction of renewable energy generators is on the rise and gets bigger in size, researchers pay more and more attention to the impact of such facilities on the power market as well as on the stability of power grid system. In Korea, while studies on the latter, including calculating the marginal capacity of renewable energy generators, is being made, those on the former has not yet been performed. As such, this paper analyses the impact of a big renewable energy generators on the price and transaction cost of domestic power market and proposes ideas to minimize such influence by applying the technology of forecasting renewable energy.

  • PDF

데이터기반의 신규 사업 매출추정방법 연구: 지능형 사업평가 시스템을 중심으로 (A Data-based Sales Forecasting Support System for New Businesses)

  • 전승표;성태응;최산
    • 지능정보연구
    • /
    • 제23권1호
    • /
    • pp.1-22
    • /
    • 2017
  • 사업타당성 분석이나 기업 기술가치평가 등 미래의 사업에 대한 진입이나 투자 타당성을 분석하기 위해서는 새로운 사업과 관련한 시장을 추정하고 그 안에서 확보 가능한 매출을 객관적으로 추정하는 과정이 필수 불가결하다. 이런 신규 매출이나 시장규모의 추정 방법은 다양한 방법으로 구분이 가능한데 크게 정량적인 방법과 정성적인 방법으로 구분할 수 있다. 그러나 두 가지 방법 모두 많은 자원과 시간을 필요로 한다. 그래서 우리는 신규 사업의 평가지원을 위한 데이터 기반의 지능형 매출 예측 시스템을 제안하고자 한다. 본 연구는 사업타당성 분석이나 기술가치평가를 위한 신규 사업의 매출 추정 시스템을 개발하는데, 알고리즘 기반으로 전통적인 정량 예측방법 중 하나인 유추방법에 주목했다. 동일한 국내 산업에서 최근 창업한 기업의 매출 실적을 국내 신규 사업의 매출액을 추정하는 유추 대상 변수로 활용할 수 있는지 검토한다. 여기서 유추예측 대상은 최초 매출액과 초기 성장률이며, 주요 비교 차원은 산업분류, 창업시기 등이 고려된다. 특히 본 연구는 우리나라 창업 기업이 가지는 매출 성장률의 평균회귀 현상을 활용하는 지능형 정보 지원 시스템을 제안하다. 본 연구에서는 신규 매출 추정을 위해서 역사적 자료인 창업 매출 실적을 활용하는 방법이 적절한지 판단하기 위해서 잠재성장모형 등을 활용해 산업분류에 따른 신규 사업의 초기 매출액과 연도별 성장률이 산업분류별로 차이가 있는지 분석한다. 기존 기업의 창업 후 4년간 매출 성과의 종단자료를 잠재성장모형으로 분석하는데, 특정 산업분류에서 차이를 보여주는지 분석해 산업분류가 유추 예측에서 고려해야할 유의미한 변수인지 분석하는 것이다. 본 연구의 결과는 신속하고 객관적인 신규 사업 매출 추정을 가능하게 하는 지능형 정보시스템을 개발하게 해서 사업성타당성 분석이나 기술가치평가 과정의 효율성을 개선시켜 줄 것으로 기대된다.

문화·관광부문 타당성조사를 위한 중력모형의 개선방안 (Improving the Gravity Model for Feasibility Studies in the Cultural and Tourism Sector)

  • 이혜진
    • 아태비즈니스연구
    • /
    • 제15권1호
    • /
    • pp.319-334
    • /
    • 2024
  • Purpose - The purpose of this study is to examine the gravity model commonly used for demand forecasting upon the implementation of new tourist facilities and analyze the main causation of forecasting errors to provide a suggestion on how to improve. Design/methodology/approach - This study first measured the errors in predicted values derived from past feasibility study reports by examining the cases of five national science museums. Next, to improve the predictive accuracy of the gravity model, the study identified the five most likely issues contributing to errors, applied modified values, and recalculated. The potential for improvement was then evaluated through a comparison of forecasting errors. Findings - First, among the five science museums with very similar characteristics, there was no clear indication of a decrease in the number of visitors to existing facilities due to the introduction of new facilities. Second, representing the attractiveness of tourist facilities using the facility size ratio can lead to significant prediction errors. Third, the impact of distance on demand can vary depending on the characteristics of the facility and the conditions of the area where the facility is located. Fourth, if the distance value is below 1, it is necessary to limit the range of that value to avoid having an excessively small value. Fifth, depending on the type of population data used, prediction results may vary, so it is necessary to use population data suitable for each latent market instead of simply using overall population data. Finally, if a clear trend is anticipated in a certain type of tourist behavior, incorporating this trend into the predicted values could help reduce prediction errors. Research implications or Originality - This study identified the key factors causing prediction errors by using national science museums as cases and proposed directions for improvement. Additionally, suggestions were made to apply the model more flexibly to enhance predictive accuracy. Since reducing prediction errors contributes to increased reliability of analytical results, the findings of this study are expected to contribute to policy decisions handled with more accurate information when running feasibility analyses.