• Title/Summary/Keyword: forecasting models

Search Result 1,022, Processing Time 0.027 seconds

Comparing Monthly Precipitation Predictions Using Time Series Analysis with Deep Learning Models (시계열 분석 및 딥러닝 모형을 활용한 월 강수량 예측 비교)

  • Chung, Yeon-Ji;Kim, Min-Ki;Um, Myoung-Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.4
    • /
    • pp.443-463
    • /
    • 2024
  • This study sought to improve the accuracy of precipitation prediction by utilizing monthly precipitation data for each region over the past 30 years. Using statistical models (ARIMA, SARIMA) and deep learning models (LSTM, GBM), we learned monthly precipitation data from 1983 to 2012 in Gangneung, Gwangju, Daegu, Daejeon, Busan, Seoul, Jeju, and Chuncheon. Based on this, monthly precipitation was predicted for 10 years from 2013 to 2022. As a result of the prediction, most models accurately predicted the precipitation trend, but showed a tendency to underpredict the actual precipitation. To solve these problems, appropriate models were selected for each region and season. The LSTM model showed suitable results in Gangneung, Gwangju, Daegu, Daejeon, Busan, Seoul, Jeju, and Chuncheon. When comparing forecasting power by season, the SARIMA model showed particularly suitable forecasting performance in winter in Gangneung, Gwangju, Daegu, Daejeon, Seoul, and Chuncheon. Additionally, the LSTM model showed higher performance than other models in the summer when precipitation is concentrated. In conclusion, closely analyzing regional and seasonal precipitation patterns and selecting the optimal prediction model based on this plays a critical role in increasing the accuracy of precipitation prediction.

A study on the Conceptual Design for the Real-time wind Power Prediction System in Jeju (제주 실시간 풍력발전 출력 예측시스템 개발을 위한 개념설계 연구)

  • Lee, Young-Mi;Yoo, Myoung-Suk;Choi, Hong-Seok;Kim, Yong-Jun;Seo, Young-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2202-2211
    • /
    • 2010
  • The wind power prediction system is composed of a meteorological forecasting module, calculation module of wind power output and HMI(Human Machine Interface) visualization system. The final information from this system is a short-term (6hr ahead) and mid-term (48hr ahead) wind power prediction value. The meteorological forecasting module for wind speed and direction forecasting is a combination of physical and statistical model. In this system, the WRF(Weather Research and Forecasting) model, which is a three-dimensional numerical weather model, is used as the physical model and the GFS(Global Forecasting System) models is used for initial condition forecasting. The 100m resolution terrain data is used to improve the accuracy of this system. In addition, optimization of the physical model carried out using historic weather data in Jeju. The mid-term prediction value from the physical model is used in the statistical method for a short-term prediction. The final power prediction is calculated using an optimal adjustment between the currently observed data and data predicted from the power curve model. The final wind power prediction value is provided to customs using a HMI visualization system. The aim of this study is to further improve the accuracy of this prediction system and develop a practical system for power system operation and the energy market in the Smart-Grid.

Optimization of the computing environment to improve the speed of the modeling (WRF and CMAQ) calculation of the National Air Quality Forecast System (국가 대기질 예보 시스템의 모델링(기상 및 대기질) 계산속도 향상을 위한 전산환경 최적화 방안)

  • Myoung, Jisu;Kim, Taehee;Lee, Yonghee;Suh, Insuk;Jang, Limsuk
    • Journal of Environmental Science International
    • /
    • v.27 no.8
    • /
    • pp.723-735
    • /
    • 2018
  • In this study, to investigate an optimal configuration method for the modeling system, we performed an optimization experiment by controlling the types of compilers and libraries, and the number of CPU cores because it was important to provide reliable model data very quickly for the national air quality forecast. We were made up the optimization experiment of twelve according to compilers (PGI and Intel), MPIs (mvapich-2.0, mvapich-2.2, and mpich-3.2) and NetCDF (NetCDF-3.6.3 and NetCDF-4.1.3) and performed wall clock time measurement for the WRF and CMAQ models based on the built computing resources. In the result of the experiment according to the compiler and library type, the performance of the WRF (30 min 30 s) and CMAQ (47 min 22 s) was best when the combination of Intel complier, mavapich-2.0, and NetCDF-3.6.3 was applied. Additionally, in a result of optimization by the number of CPU cores, the WRF model was best performed with 140 cores (five calculation servers), and the CMAQ model with 120 cores (five calculation servers). While the WRF model demonstrated obvious differences depending on the number of CPU cores rather than the types of compilers and libraries, CMAQ model demonstrated the biggest differences on the combination of compilers and libraries.

Prediction of Photovoltaic Power Generation Based on Machine Learning Considering the Influence of Particulate Matter (미세먼지의 영향을 고려한 머신러닝 기반 태양광 발전량 예측)

  • Sung, Sangkyung;Cho, Youngsang
    • Environmental and Resource Economics Review
    • /
    • v.28 no.4
    • /
    • pp.467-495
    • /
    • 2019
  • Uncertainty of renewable energy such as photovoltaic(PV) power is detrimental to the flexibility of the power system. Therefore, precise prediction of PV power generation is important to make the power system stable. The purpose of this study is to forecast PV power generation using meteorological data including particulate matter(PM). In this study, PV power generation is predicted by support vector machine using RBF kernel function based on machine learning. Comparing the forecasting performances by including or excluding PM variable in predictor variables, we find that the forecasting model considering PM is better. Forecasting models considering PM variable show error reduction of 1.43%, 3.60%, and 3.88% in forecasting power generation between 6am~8pm, between 12pm~2pm, and at 1pm, respectively. Especially, the accuracy of the forecasting model including PM variable is increased in daytime when PV power generation is high.

Analysis of Chaos Characterization and Forecasting of Daily Streamflow (일 유량 자료의 카오스 특성 및 예측)

  • Wang, W.J.;Yoo, Y.H.;Lee, M.J.;Bae, Y.H.;Kim, H.S.
    • Journal of Wetlands Research
    • /
    • v.21 no.3
    • /
    • pp.236-243
    • /
    • 2019
  • Hydrologic time series has been analyzed and forecasted by using classical linear models. However, there is growing evidence of nonlinear structure in natural phenomena and hydrologic time series associated with their patterns and fluctuations. Therefore, the classical linear techniques for time series analysis and forecasting may not be appropriate for nonlinear processes. Daily streamflow series at St. Johns river near Cocoa, Florida, USA showed an interesting result of a low dimensional, nonlinear dynamical system but daily inflow at Soyang reservoir, South Korea showed stochastic property. Based on the chaotic dynamical characteristic, DVS (deterministic versus stochastic) algorithm is used for short-term forecasting, as well as for exploring the properties of the system. In addition to the use of DVS algorithm, a neural network scheme for the forecasting of the daily streamflow series can be used and the two techniques are compared in this study. As a result, the daily streamflow which has chaotic property showed much more accurate result in short term forecasting than stochastic data.

ETF Trading Based on Daily KOSPI Forecasting Using Neural Networks (신경회로망을 이용한 KOSPI 예측 기반의 ETF 매매)

  • Hwang, Heesoo
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.1
    • /
    • pp.7-12
    • /
    • 2019
  • The application of neural networks to stock forecasting has received a great deal of attention because no assumption about a suitable mathematical model has to be made prior to forecasting and they are capable of extracting useful information from data, which is required to describe nonlinear input-output relations of stock forecasting. The paper builds neural network models to forecast daily KOrea composite Stock Price Index (KOSPI), and their performance is demonstrated. MAPEs of NN1 model show 0.427 and 0.627 in its learning and test, respectively. Based on the predicted KOSPI price, the paper proposes an alpha trading for trades in Exchange Traded Funds (ETFs) that fluctuate with the KOSPI200. The alpha trading is tested with data from 125 trade days, and its trade return of 7.16 ~ 15.29 % suggests that the proposed alpha trading is effective.

Forecasting Sow's Productivity using the Machine Learning Models (머신러닝을 활용한 모돈의 생산성 예측모델)

  • Lee, Min-Soo;Choe, Young-Chan
    • Journal of Agricultural Extension & Community Development
    • /
    • v.16 no.4
    • /
    • pp.939-965
    • /
    • 2009
  • The Machine Learning has been identified as a promising approach to knowledge-based system development. This study aims to examine the ability of machine learning techniques for farmer's decision making and to develop the reference model for using pig farm data. We compared five machine learning techniques: logistic regression, decision tree, artificial neural network, k-nearest neighbor, and ensemble. All models are well performed to predict the sow's productivity in all parity, showing over 87.6% predictability. The model predictability of total litter size are highest at 91.3% in third parity and decreasing as parity increases. The ensemble is well performed to predict the sow's productivity. The neural network and logistic regression is excellent classifier for all parity. The decision tree and the k-nearest neighbor was not good classifier for all parity. Performance of models varies over models used, showing up to 104% difference in lift values. Artificial Neural network and ensemble models have resulted in highest lift values implying best performance among models.

  • PDF

A Study on the Demand Forecasting using Diffusion Models and Growth Curve Models (확산모형과 성장곡선모형을 이용한 중장기 수요예측에 관한 연구)

  • 강현철;최종후
    • The Korean Journal of Applied Statistics
    • /
    • v.14 no.2
    • /
    • pp.233-243
    • /
    • 2001
  • 중장기 수요예측을 위해 자주 사용되는 방법으로 확산모형과 성장곡선모형을 들 수 있다. 본 논문에서는 이들 방법론의 성격 및 실제 적용에 있어 모수추정에 따른 문제점들을 살펴보고, 모수추정을 효율적으로 수행하기 위한 전략을 제시한다. 또한 실제 자료에 각 방법론들을 적용하여 예측결과를 비교한다.

  • PDF

Bayesian Prediction under Dynamic Generalized Linear Models in Finite Population Sampling

  • Dal Ho Kim;Sang Gil Kang
    • Communications for Statistical Applications and Methods
    • /
    • v.4 no.3
    • /
    • pp.795-805
    • /
    • 1997
  • In this paper, we consider a Bayesian forecasting method for the analysis of repeated surveys. It is assumed that the parameters of the superpopulation model at each time follow a stochastic model. We propose Bayesian prediction procedures for the finite population total under dynamic generalized linear models. Some numerical studies are provided to illustrate the behavior of the proposed predictors.

  • PDF

A Data-based Sales Forecasting Support System for New Businesses (데이터기반의 신규 사업 매출추정방법 연구: 지능형 사업평가 시스템을 중심으로)

  • Jun, Seung-Pyo;Sung, Tae-Eung;Choi, San
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.1-22
    • /
    • 2017
  • Analysis of future business or investment opportunities, such as business feasibility analysis and company or technology valuation, necessitate objective estimation on the relevant market and expected sales. While there are various ways to classify the estimation methods of these new sales or market size, they can be broadly divided into top-down and bottom-up approaches by benchmark references. Both methods, however, require a lot of resources and time. Therefore, we propose a data-based intelligent demand forecasting system to support evaluation of new business. This study focuses on analogical forecasting, one of the traditional quantitative forecasting methods, to develop sales forecasting intelligence systems for new businesses. Instead of simply estimating sales for a few years, we hereby propose a method of estimating the sales of new businesses by using the initial sales and the sales growth rate of similar companies. To demonstrate the appropriateness of this method, it is examined whether the sales performance of recently established companies in the same industry category in Korea can be utilized as a reference variable for the analogical forecasting. In this study, we examined whether the phenomenon of "mean reversion" was observed in the sales of start-up companies in order to identify errors in estimating sales of new businesses based on industry sales growth rate and whether the differences in business environment resulting from the different timing of business launch affects growth rate. We also conducted analyses of variance (ANOVA) and latent growth model (LGM) to identify differences in sales growth rates by industry category. Based on the results, we proposed industry-specific range and linear forecasting models. This study analyzed the sales of only 150,000 start-up companies in Korea in the last 10 years, and identified that the average growth rate of start-ups in Korea is higher than the industry average in the first few years, but it shortly shows the phenomenon of mean-reversion. In addition, although the start-up founding juncture affects the sales growth rate, it is not high significantly and the sales growth rate can be different according to the industry classification. Utilizing both this phenomenon and the performance of start-up companies in relevant industries, we have proposed two models of new business sales based on the sales growth rate. The method proposed in this study makes it possible to objectively and quickly estimate the sales of new business by industry, and it is expected to provide reference information to judge whether sales estimated by other methods (top-down/bottom-up approach) pass the bounds from ordinary cases in relevant industry. In particular, the results of this study can be practically used as useful reference information for business feasibility analysis or technical valuation for entering new business. When using the existing top-down method, it can be used to set the range of market size or market share. As well, when using the bottom-up method, the estimation period may be set in accordance of the mean reverting period information for the growth rate. The two models proposed in this study will enable rapid and objective sales estimation of new businesses, and are expected to improve the efficiency of business feasibility analysis and technology valuation process by developing intelligent information system. In academic perspectives, it is a very important discovery that the phenomenon of 'mean reversion' is found among start-up companies out of general small-and-medium enterprises (SMEs) as well as stable companies such as listed companies. In particular, there exists the significance of this study in that over the large-scale data the mean reverting phenomenon of the start-up firms' sales growth rate is different from that of the listed companies, and that there is a difference in each industry. If a linear model, which is useful for estimating the sales of a specific company, is highly likely to be utilized in practical aspects, it can be explained that the range model, which can be used for the estimation method of the sales of the unspecified firms, is highly likely to be used in political aspects. It implies that when analyzing the business activities and performance of a specific industry group or enterprise group there is political usability in that the range model enables to provide references and compare them by data based start-up sales forecasting system.