• Title/Summary/Keyword: forecast model

Search Result 1,652, Processing Time 0.025 seconds

Development of Yield Forecast Models for Autumn Chinese Cabbage and Radish Using Crop Growth and Development Information (생육정보를 이용한 가을배추와 가을무 단수 예측 모형 개발)

  • Lee, Choon-Soo;Yang, Sung-Bum
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.2
    • /
    • pp.279-293
    • /
    • 2017
  • This study suggests the yield forecast models for autumn chinese cabbage and radish using crop growth and development information. For this, we construct 24 alternative yield forecast models and compare the predictive power using root mean square percentage errors. The results shows that the predictive power of model including crop growth and development informations is better than model which does not include those informations. But the forecast errors of best forecast models exceeds 5%. Thus it is important to establish reliable data and improve forecast models.

Evaluation of a Solar Flare Forecast Model with Cost/Loss Ratio

  • Park, Jongyeob;Moon, Yong-Jae;Lee, Kangjin;Lee, Jaejin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.84.2-84.2
    • /
    • 2015
  • There are probabilistic forecast models for solar flare occurrence, which can be evaluated by various skill scores (e.g. accuracy, critical success index, heidek skill score, true skill score). Since these skill scores assume that two types of forecast errors (i.e. false alarm and miss) are equal or constant, which does not take into account different situations of users, they may be unrealistic. In this study, we make an evaluation of a probabilistic flare forecast model (Lee et al. 2012) which use sunspot groups and its area changes as a proxy of flux emergence. We calculate daily solar flare probabilities from 1996 to 2014 using this model. Overall frequencies are 61.08% (C), 22.83% (M), and 5.44% (X). The maximum probabilities computed by the model are 99.9% (C), 89.39% (M), and 25.45% (X), respectively. The skill scores are computed through contingency tables as a function of forecast probability, which corresponds to the maximum skill score depending on flare class and type of a skill score. For the critical success index widely used, the probability threshold values for contingency tables are 25% (C), 20% (M), and 4% (X). We use a value score with cost/loss ratio, relative importance between the two types of forecast errors. We find that the forecast model has an effective range of cost/loss ratio for each class flare: 0.15-0.83(C), 0.11-0.51(M), and 0.04-0.17(X), also depending on a lifetime of satellite. We expect that this study would provide a guideline to determine the probability threshold for space weather forecast.

  • PDF

Evaluation of a Solar Flare Forecast Model with Value Score

  • Park, Jongyeob;Moon, Yong-Jae;Lee, Kangjin;Lee, Jaejin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.80.1-80.1
    • /
    • 2016
  • There are probabilistic forecast models for solar flare occurrence, which can be evaluated by various skill scores (e.g. accuracy, critical success index, heidek skill score, and true skill score). Since these skill scores assume that two types of forecast errors (i.e. false alarm and miss) are equal or constant, which does not take into account different situations of users, they may be unrealistic. In this study, we make an evaluation of a probabilistic flare forecast model [Lee et al., 2012] which use sunspot groups and its area changes as a proxy of flux emergence. We calculate daily solar flare probabilities from 2011 to 2014 using this model. The skill scores are computed through contingency tables as a function of forecast probability, which corresponds to the maximum skill score depending on flare class and type of a skill score. We use a value score with cost/loss ratio, relative importance between the two types of forecast errors. The forecast probability (y) is linearly changed with the cost/loss ratio (x) in the form of y=ax+b: a=0.88; b=0 (C), a=1.2; b=-0.05(M), a=1.29; b=-0.02(X). We find that the forecast model has an effective range of cost/loss ratio for each class flare: 0.536-0.853(C), 0.147-0.334(M), and 0.023-0.072(X). We expect that this study would provide a guideline to determine the probability threshold and the cost/loss ratio for space weather forecast.

  • PDF

How to forecast solar flares, solar proton events, and geomagnetic storms

  • Moon, Yong Jae
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.33-33
    • /
    • 2013
  • We are developing empirical space weather (solar flare, solar proton event, and geomagnetic storm) forecast models based on solar data. In this talk we will review our main results and recent progress. First, we have examined solar flare (R) occurrence probability depending on sunspot McIntosh classification, its area, and its area change. We find that sunspot area and its increase (a proxy of flux emergence) greatly enhance solar flare occurrence rates for several sunspot classes. Second, a solar proton event (S) forecast model depending on flare parameters (flare strength, duration, and longitude) as well as CME parameters (speed and angular width) has been developed. We find that solar proton event probability strongly depends on these parameters and CME speed is well correlated with solar proton flux for disk events. Third, we have developed an empirical storm (G) forecast model to predict probability and strength of a storm using halo CME - Dst storm data. For this we use storm probability maps depending on CME parameters such as speed, location, and earthward direction. We are also looking for geoeffective CME parameters such as cone model parameters and magnetic field orientation. We find that all superstorms (less than -200 nT) occurred in the western hemisphere with southward field orientations. We have a plan to set up a storm forecast method with a three-stage approach, which will make a prediction within four hours after the solar coronagraph data become available. We expect that this study will enable us to forecast the onset and strength of a geomagnetic storm a few days in advance using only CME parameters and the WSA-ENLIL model. Finally, we discuss several ongoing works for space weather applications.

  • PDF

IMPROVING THE ESP ACCURACY WITH COMBINATION OF PROBABILISTIC FORECASTS

  • Yu, Seung-Oh;Kim, Young-Oh
    • Water Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.101-109
    • /
    • 2004
  • Aggregating information by combining forecasts from two or more forecasting methods is an alternative to using forecasts from just a single method to improve forecast accuracy. This paper describes the development and use of a monthly inflow forecast model based on an optimal linear combination (OLC) of forecasts derived from naive, persistence, and Ensemble Streamflow Prediction (ESP) forecasts. Using the cross-validation technique, the OLC model made 1-month ahead probabilistic forecasts for the Chungju multi-purpose dam inflows for 15 years. For most of the verification months, the skill associated with the OLC forecast was superior to those drawn from the individual forecast techniques. Therefore this study demonstrates that OLC can improve the accuracy of the ESP forecast, especially during the dry season. This study also examined the value of the OLC forecasts in reservoir operations. Stochastic Dynamic Programming (SDP) derived the optimal operating policy for the Chungju multi-purpose dam operation and the derived policy was simulated using the 15-year observed inflows. The simulation results showed the SDP model that updated its probability from the new OLC forecast provided more efficient operation decisions than the conventional SDP model.

  • PDF

Improvement of Wave Height Mid-term Forecast for Maintenance Activities in Southwest Offshore Wind Farm (서남권 해상풍력단지 유지보수 활동을 위한 중기 파고 예보 개선)

  • Ji-Young Kim;Ho-Yeop Lee;In-Seon Suh;Da-Jeong Park;Keum-Seok Kang
    • Journal of Wind Energy
    • /
    • v.14 no.3
    • /
    • pp.25-33
    • /
    • 2023
  • In order to secure the safety of increasing offshore activities such as offshore wind farm maintenance and fishing, IMPACT, a mid-term marine weather forecasting system, was established by predicting marine weather up to 7 days in advance. Forecast data from the Korea Hydrographic and Oceanographic Agency (KHOA), which provides the most reliable marine meteorological service in Korea, was used, but wind speed and wave height forecast errors increased as the leading forecast period increased, so improvement of the accuracy of the model results was needed. The Model Output Statistics (MOS) method, a post-correction method using statistical machine learning, was applied to improve the prediction accuracy of wave height, which is an important factor in forecasting the risk of marine activities. Compared with the observed data, the wave height prediction results by the model before correction for 6 to 7 days ahead showed an RMSE of 0.692 m and R of 0.591, and there was a tendency to underestimate high waves. After correction with the MOS technique, RMSE was 0.554 m and R was 0.732, confirming that accuracy was significantly improved.

Hourly Average Wind Speed Simulation and Forecast Based on ARMA Model in Jeju Island, Korea

  • Do, Duy-Phuong N.;Lee, Yeonchan;Choi, Jaeseok
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1548-1555
    • /
    • 2016
  • This paper presents an application of time series analysis in hourly wind speed simulation and forecast in Jeju Island, Korea. Autoregressive - moving average (ARMA) model, which is well in description of random data characteristics, is used to analyze historical wind speed data (from year of 2010 to 2012). The ARMA model requires stationary variables of data is satisfied by power law transformation and standardization. In this study, the autocorrelation analysis, Bayesian information criterion and general least squares algorithm is implemented to identify and estimate parameters of wind speed model. The ARMA (2,1) models, fitted to the wind speed data, simulate reference year and forecast hourly wind speed in Jeju Island.

Improving Wind Speed Forecasts Using Deep Neural Network

  • Hong, Seokmin;Ku, SungKwan
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.327-333
    • /
    • 2019
  • Wind speed data constitute important weather information for aircrafts flying at low altitudes, such as drones. Currently, the accuracy of low altitude wind predictions is much lower than that of high-altitude wind predictions. Deep neural networks are proposed in this study as a method to improve wind speed forecast information. Deep neural networks mimic the learning process of the interactions among neurons in the brain, and it is used in various fields, such as recognition of image, sound, and texts, image and natural language processing, and pattern recognition in time-series. In this study, the deep neural network model is constructed using the wind prediction values generated by the numerical model as an input to improve the wind speed forecasts. Using the ground wind speed forecast data collected at the Boseong Meteorological Observation Tower, wind speed forecast values obtained by the numerical model are compared with those obtained by the model proposed in this study for the verification of the validity and compatibility of the proposed model.

Short-Term Power Demand Forecast using Exclusion of Week Periodicity (주 주기성의 제거를 이용한 단기전력수요예측)

  • Koh, Hee-Seog;Lee, Chung-Sik;Lee, Chul-Woo;Chil, Jong-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 1997.07c
    • /
    • pp.1177-1179
    • /
    • 1997
  • In this paper, short-term power demand forecast using exclusion of week periodicity presented. Week periodicity excluded from weekday change ratio. Forecast term of five and multiple regression model of the three form was composed. Forecast result was good. Therefore, It Could be the power demand forecast of special day(weekend). This method may contribute improvement of forecast accuracy.

  • PDF

Streamflow Forecast Model on Nakdong River Basin (낙동강유역 하천유량 예측모형 구축)

  • Lee, Byong-Ju;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.11
    • /
    • pp.853-861
    • /
    • 2011
  • The objective of this study is to assess Sejong University River Forecast (SURF) model which consists of a continuous rainfall-runoff model and measured streamflow assimilation using ensemble Kalman filter technique for streamflow forecast on Nakdong river basin. The study area is divided into 43 subbasins. The forecasted streamflows are evaluated at 12 measurement sites during flood season from 2006 to 2007. The forecasted ones are improved due to the impact of the measured streamflows assimilation. In effectiveness indices corresponding to 1~5 h forecast lead times, the accuracy of the forecasted streamflows with the assimilation approach is improved by 46.2~30.1% compared with that using only the rainfall-runoff model. The mean normalized absolute error of forecasted peak flow without and with data assimilation approach in entering 50% of the measured rainfall, respectively, the accuracy of the latter is improved about 40% than that of the former. From these results, SURF model is able to be used as a real-time river forecast model.