• Title/Summary/Keyword: forced bars

Search Result 8, Processing Time 0.02 seconds

Heat Transfer Enhancement by an Oscillating Frequency of Vortex Generator (와류발생기의 가진 주파수에 의한 열전달 향상)

  • Bang, Chang-Hoon;Kim, Jung-Soo;Yea, Yong-Taeg
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.2 s.74
    • /
    • pp.7-14
    • /
    • 2006
  • A Problem of low-velocity forced convection in a channel flow with heated wall is of practical importance and widely considered in the design of devices such as heat exchangers, and electronic equipments. Therefore, there is an urgent need for improving heat transfer performance of heated wall in the channel. In the present study, an oscillating vortex generator method is proposed to enhance the heat transfer in a channel. In this method, a rectangular bars are set in the upstream of heated region of the channel. The bars are forced to oscillate normal to the inflow, and then actively and largely generates transverse vortices behind the bars. As a result, this apparatus can enhance the heat transfer rates remarkably. Because of the interaction between the flow and oscillating bars, the variations of the flow and thermal fields become time-dependent state.

Natural Frequencies of Nonsymmetrically Tapered Beams (비대칭 변단면 보의 고유진동수)

  • 백봉인;안성기;김순철;이수곤
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.267-274
    • /
    • 1999
  • An understanding of the natural frequencies of a beam is virtually a prerequisite to the understanding of its response in forced vibration due to shock, ground acceleration or moving loads. Contrary to the frequencies of the prismatic bars with arbitrary boundary conditions, those of a tapered bar are hard to determine when one employs convevtional neutral equilibrium or energy method. In this paper, finite element method is adopted to determine the fundamental frequencies of the non-symmetrically tapered bars. The bars assume the shapes of straight lines along the axis. The parameters considered in this study are sectional parameter, m,n and taper parameter, $\alpha$ For the structural engineer's convenience, the results by finite element method are expressed by simple algebraic equations, by which first mode frequencies are easily estimated. And they agree fairy well with those by F.E.M in most cases.

  • PDF

Numerical Experiments of the Behavior of Bars in the Channels with Periodic Variable Width (주기적인 하폭 변화 수로에서 사주의 거동에 관한 수치실험)

  • Jang, Chang-Lae
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.1
    • /
    • pp.37-47
    • /
    • 2014
  • This study examines the processes and the behaviour characteristics of forcing bars in channels with periodic variable width in the alternate and braided regimes by using a two dimensional numerical model. The wavelength and the migration speed decrease as the amplitude of variable width increases. The forcing effects of the width variation on the alternate bars is stronger than those on the braided bars. The bar migration speed increases as the dimensionless amplitude in the braided regime is 0.25. However, the migration speed is abruptly decreased as the amplitude in it was larger than 0.25. The bar migration speed increases in the alternates bar regime as the dimensionless wavelength increases. However, the migration speed decreases around 1 of the wavelength. As the bar wavelength and the variable width wavelength coincide, the bars don't migrate downstream by the strong forcing effects on the bars due to the suppression by the width variation.

Statistical Analysis of Resistance of Rein forced Concrete Members (철근 콘크리트 부재강도의 확률적 특성 분석)

  • 김상효;배규웅;박흥석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1990.04a
    • /
    • pp.90-95
    • /
    • 1990
  • It is widely recognized that the strengths of reinforced concrete members have random characteristics due to the variability of the mechanical properties of concrete and steel, the dimensional error as well as incorrect placement of reinforcing bars. Statistical models of the variabilities of strengths of reinforced concrete members, therefore, need to be developed to evaluate the safety level implied in current practices. Based on the probabilistic models of basic factors affecting the R.C. member strengths, in this study, the probabilistic characteristics of member resistance have been studied through Monte Carlo simulation.

  • PDF

Thermal Shield for Cryostat of KSTAR TOKAMAK (KSTAR CRYOSTAT의 열차폐막 설계)

  • 육종설;김동락;이기성
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.121-122
    • /
    • 2000
  • KSTAR coils use super-conducting magnet systems. These coils operate around 4.5K and therefore require a thermal shield to reduce the heat load from outer cryostat. 80K thermal shields must be cooled by a forced flow of He gas at 20 bars without the pressure drop of 0.45 bar. Designed thermal shield shows that the pressure drop is lower than that of 0.5 bar.

  • PDF

Experimental analysis of geomorphic changes in weir downstream by behavior of alternate bar upstream (보 상류 교호사주의 거동에 따른 하류 지형변화에 대한 실험적 분석)

  • Lee, KyungSu;Jang, Chang-Lae;Kim, GiJung
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.spc2
    • /
    • pp.801-810
    • /
    • 2019
  • This study analyzes the impact on geomorphic changes downstream due to alternate bars developed weir upstream through laboratory experiments. The disturbance, such as a spur in the side wall, of the flow at the inlet of the channel triggers the development of alternate bar upstream at the beginning of the experiment, and gradually moved downstream with keeping their shapes over time. The bed in the downstream of weir in the mid of channel scoured due to the scarcity of sediment inflow because weir upstream traps it. Moreover, bar migration speed decreases as the bars approaches to the weir with time. However, as time increases, the alternate bars upstream migrate over the weir, and sediment in the eroded bed of the weir downstream are deposited. The phase of the bar upstream changes oppositely after passing through the weir. The phase of the bar downstream changes rapidly as the shape of alternate bar is clear upstream, which is affected by the strong disturbance. The phase of bar changes, and the bar migration speed decreases gradually with time, and finally stopped due to forcing effects on the bar by the disturbance. The faster the reaction of alternate bar with a long spur, the larger the bar height formed downstream and the shorter the bar length. This means that the larger the forcing effect of bar, the more it affects the bar migration. In addition, although the size of the alternate bar increases over time, the bar doesn't migrate downstream and a forced bar is generated.

The Effect of Slip on the Convective Instability Characteristics of the Stagnation Point Flow Over a Rough Rotating Disk

  • Mukherjee, Dip;Sahoo, Bikash
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.4
    • /
    • pp.831-843
    • /
    • 2021
  • In this paper we look at the three dimensional stagnation point flow problem over a rough rotating disk. We study the theoretical behaviour of the stagnation point flow, or forced flow, in the presence of a slip factor in which convective instability stationary modes appear. We make a numerical investigation of the effects of slip on the behaviour of the flow components of the stagnation point flow where the disk is rough. We provide, for the first time in the literature, a complete convective instability analysis and an energy analysis. Suitable similarity transformations are used to reduce the Navier-Stokes equations and the continuity equation into a system of highly non-linear coupled ordinary differential equations, and these are solved numerically subject to suitable boundary conditions using the bvp4c function of MATLAB. The convective instability analysis and the energy analysis are performed using the Chebyshev spectral method in order to obtain the neutral curves and the energy bars. We observe that the roughness of the disk has a destabilising effect on both Type-I and Type-II instability modes. The results obtained will be prominently treated as benchmarks for our future studies on stagnation flow.

Fluidelastic Instability Analysis of the U-Tube Bundle of a Recirculating Type Steam Generator (재순환식 증기발생기 U-튜브군에 대한 유체탄성 불안정 해석)

  • 조종철;이상균;김웅식;신원기;은영수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.200-214
    • /
    • 1993
  • This paper presents the results of fluidelastic instability analysis performed for the U-tube bundle of a Westinghouse model 51 steam generator, one of the recirculating types designed at an early stage, in which the principal region of external cross-flow is associated with the U-bend portion of tube. The prerequisites for this analysis are detailed informations of the secondary side flow conditions in the steam generator and the free vibration behaviours of the U-tubes. In this study, the three-dimensional two-phase flow field in the steam generator has been calculated employing the ATHOS3 steam generator two-phase flow code and the ANSYS engineering analysis code has been used to calculate the free vibration responses of specific U tubes under consideration. The assessment of the potential instability for the suspect U-tubes, which is the final analysis process of the present work, has been accomplished by combining the secondary side velocity and density distributions obtained from the ATHOS3 prediction with the relative modal displacement and natural frequency data calculated using the ANSYS code. The damping of tubes in two-phase flow has been deduced from the existing experimental data by taking into account the secondary side void fraction effect. In operation of the steam generator, the tube support conditions at the tube-to-tube support plate intersections due to either tube denting degradation or deposition of tube support plate corrosion products or ingression of dregs. Thus, various hypothetical cases regarding the tube support conditions at the tube-to-tube support plate intersections have been considered to investigate the clamped support effects on the forced vibration response of the tube. Also, the effect of anti-vibration bars support in the curved portion of tube has been examined.