• 제목/요약/키워드: force-vibration test

검색결과 409건 처리시간 0.023초

고속 전동기용 무급유 포일 저널 베어링 구조체의 하중지지 및 진동 특성 규명 (Identification of Load Carrying and Vibration Characteristics of Oil-Free Foil Journal Bearing Structures for High Speed Motors)

  • 백두산;황성호;김태호
    • Tribology and Lubricants
    • /
    • 제37권6호
    • /
    • pp.261-272
    • /
    • 2021
  • This study investigates the structural characteristics of oil-free, gas beam foil journal bearings (GBFJBs) for use in high speed motors. Mathematical modeling was carried out, and reaction force modeling for static load was performed to predict the structural characteristics of the GBFJB. Mathematical modeling and reaction force modeling for static load are performed to predict the structural characteristics of GBFJBs. The reaction force of the test bearing against static loads was measured during experiments and compared with the predicted results. The measured experimental data reveal the nonlinear stiffness characteristics of the GBFJB against varying displacement and agree well with the predictions. Dynamic load tests using an exciter allow to identify the vibration characteristics of the GBFJB. Test results show that the vibration displacement, dynamic force, and acceleration measured on the test bearing are most dominant at the applied dynamic load (synchronization) frequency. Futhermore, the test results show that the hysteresis area recorded during the dynamic tests increases with the excitation amplitude and frequency, and that the beam stick phenomena occurr at high excitation frequencies. The single degree of freedom (DOF) vibration model aids to identify the stiffness and damping coefficient of the GBFJB, which decrease as the excitation frequency increases.

BIM기반의 구조물 진동제어를 위한 Passive Magnetic Device 개발에 관한 연구 (A Study of Passive Magnetic Device based on BIM for the Vibration Conrol of Structures)

  • 구선모;김재준
    • 한국BIM학회 논문집
    • /
    • 제6권3호
    • /
    • pp.42-48
    • /
    • 2016
  • Structural members are designed to maintain the load-carrying capacity as well as structural strength, and the structural serviceability such as the deflection, cracks, and vibration to give the occupants uncomfortable environment should be checked. Recently, the importance of the vibration has been issued since the Techno Mart accident due to vibration resonance. This study provides a passive vibration control system using the repulsion force of magnets to reduce dynamic vibrations. The systems is devised by importing the constraint condition by a hinge to operate magnets installed at two adjacent locations. The effectiveness of the proposed system is investigated by the vibration control test of a steel beam with and without the control system. It is illustrated in the test that the system is activated by the control forces executed by the magnets and can be utilized in reducing the dynamic responses. The system can be applied to pedestrian bridge and traffic bridge. The applicability is expected in the future by optimizing the factors to affect the dynamic responses like the intensity, mass, locations of magnets.

스마트무인기 기체구조물 지상진동시험 (Ground Vibration Tests of SmartUAV Airframe Structure)

  • 전병희;강휘원;이정진;이영신
    • 한국항공우주학회지
    • /
    • 제38권5호
    • /
    • pp.482-489
    • /
    • 2010
  • 본 논문에서는 스마트 무인기의 자유 진동 특성 및 로터의 회전으로 인한 기체 구조물의 진동특성 즉 강제진동 특성을 실험적으로 규명하기 위해 수행한 시험방법, 센서 및 장비 설치, 시험 결과 검증 방법 및 시험결과를 수록하였다. 스마트 무인기의 지지 조건은 번지코드를 이용하여 자유-자유 경계조건을 구현하였고, 시험은 3개의 가진기를 사용하여 다점 랜덤 가진법으로 구조물을 가진하였으며 약 100여개의 가속도계로부터 기체 구조물의 응답특성을 측정하였다. 주파수 응답함수를 통하여 다기준 최소 자승 복소지수법을 적용하여 고유 진동수, 감쇠율, 모드 형상등의 모달 매개변수를 산출하였다. 또한 강제 진동 시험은 스마트 무인기의 양쪽 로터가 장착되는 나셀 부위에 x,y,z 각 방향으로 가진기를 장착하여 로터 회전 주파수를 가진함으로써 구조물과 각종 장비의 진동응답 특성을 측정하였다.

Indirect force 측정 방법과 Pseudo-역행렬을 이용한 정밀한 Force 예측 (Precise Forces Prediction by Indirect Force Measurement and Pseudo-inverse Technique)

  • 심재술;안병하;하종훈;정현출
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.564-567
    • /
    • 1997
  • In the design of structure the forces acting on the structure are important parameter for noise and vibration control. However, in the complex structure, the forces at the injection point on the structure cannot be measured directly. Thus it is necessary to find out indirect force evaluation method. In this paper forces have been measured with in-situ vibration responses and system information. Three existing techniques of indirect force measurement, viz. direct inverse, principal component analysis and regularization have been compared. It has been shown that multi-vibration responses are essential for the precise estimation of the forces. To satisfy those conditions, Rotary compressor is adopted as test sample, because it is very difficult to measure the injection forces from internal excitation to shell. It has also been obtained that relatively higher force is transmitted though three welding paths to the compressor shell. It shows a good agreement between direct and indirect force evaluation with curvature shell and plate and is investigated the possibility of force evaluation of rotary compressor as a complex structure.

  • PDF

Design of a Moving-magnet Electromagnetic Actuator for Fast Steering Mirror through Finite Element Simulation Method

  • Long, Yongjun;Mo, Jinqiu;Wei, Xiaohui;Wang, Chunlei;Wang, Shigang
    • Journal of Magnetics
    • /
    • 제19권3호
    • /
    • pp.300-308
    • /
    • 2014
  • This paper develops a moving-magnet electromagnetic actuator for fast steering mirror (FSM). The actuator achieves a reasonable compromise between voice coil actuator and piezoelectric actuator. The stroke of the actuator is between the strokes of a piezoelectric actuator and a voice coil actuator, and its force output is a linear function of air gap and excitation current within our FSM travel range. Additionally, the actuator is more reliable than voice coil actuator as the electrical connection in the actuator is static. Analytically modeling the actuator is difficult and time-consuming. Alternatively, numerous finite element simulations are carried out for the actuator analysis and design. According to the design results, a real prototype of the actuator is fabricated. An experimental test system is then built. Using the test system, the force output of the fabricated actuator is evaluated. The test results validate the actuator analysis and design.

박용 발전기세트 진동 제어용 MR 마운트 개발 (Development of MR Mount for Vibration Control of Marine Diesel-Generator Set)

  • 강옥현;김원현;주원호;박준희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 춘계학술대회 논문집
    • /
    • pp.381-385
    • /
    • 2014
  • This paper investigates the magneto-rheological(MR) mount for the marine diesel-generator(D/G) sets. Sometimes, significant vibrations over the allowable limit are observed on the D/G sets due to their huge excitation forces. Because the severe vibration can lead to structural damages to the D/G sets, it should be reduced below the limit. Although passive mounts with rubber isolators are usually used, the vibration reduction performance is not always sufficient. In addition, expecting that the vibration levels required by customers will get more severe, vibration reduction devices need to be developed. To the aim, the flow mode type of MR mount has been designed. Especially, the annular-radial configuration was adopted to enhance the damping force within the restricted space. The geometry of the mount has been optimized to obtain the required damping force and the magnetic field analysis has been carried out using ANSYS APDL. To verify the performance of the developed MR mount, an excitation test was conducted. In addition, they were applied to a medium-speed diesel generator and it was verified that about 40% of vibration reduction was yielded.

  • PDF

인공위성발사체 상단부 진동환경시험을 위한 치구설계 (Vibration Fixture design for small satellite launch vehicle environment test)

  • 정호경;서상현;박순홍;장영순;이영무
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 춘계학술대회논문집
    • /
    • pp.258-262
    • /
    • 2007
  • Satellite launch vehicle is exposed to some dynamic environment during its flight. Particularly, the safety of launch vehicle structure is surely verified under vibration environment in low frequency range. Sine sweep test is generally performed to describe this low frequency vibration environment. Dynamic property of vibration fixture is considered to get the correct property of target object. This vibration fixture should really be an extension of the armature in the form of a very rigid structure that can transfer the required force at the required frequency. An optimum fixture would have its lower natural frequency about 50% higher than the highest required forcing frequency in order to avoid fixture resonances during the test. In this study, the vibration mode analysis considering the mass of target object to design the vibration fixture. And the modal test of vibration fixture is performed to conform the design.

  • PDF

Linear oscillatory actuator를 이용한 구조물 진동의 능동 제어 연구 (Application of Linear Oscillatory Actuator to Active Structural Vibration Control)

  • 정태영;문석준;정종안;박희창;장석명
    • 소음진동
    • /
    • 제7권2호
    • /
    • pp.311-317
    • /
    • 1997
  • In this paper the active vibration control system using a linear oscillatory actuator(LOA) is studied to suppress structural vibration. In the LOA, the AC-power-energized armature generates a shift field in an air gap, which produces a oscillating force to the mover in the magnetic field generated by high density permanent magnets. LOA has relatively simple structure with almost maintenance free, compared with a hydraulic actuator. Performance test of the active vibration control system using a LOA is carried out on a steel test structure under base excitation. From this test, it is confirmed that the acceleration level of the test structure is drastically reduced near the resonant region.

  • PDF

수직발사 유도탄의 진동시험에서 유도탄 장착방향의 영향에 대한 연구 (Study on the Effects of the Mounting Direction of Vertically-launched Missiles in Vibration Tests)

  • 이호준;김기언
    • 한국소음진동공학회논문집
    • /
    • 제23권3호
    • /
    • pp.218-225
    • /
    • 2013
  • Vertically-launched missiles are supported as erected vertically in the vertical launching system of warship, and they should be mounted in the same way when vibration-tested. However, mounting missiles vertically makes a fixture, which is a supporting structure, bulky and heavy so requiring a high-performance exciter. Mounting missiles as laid down horizontally in a vibration test is economical regarding fixture manufacturing and exciter performance, but it makes test results incorrect because the different mounting direction has effects on the test results. A bending moment due to missiles' weight happens to missiles, and resilient mounts, which support missiles in the vertical launch system, deflect differently from the real situation because of the static deflection of these mounts due to missiles' weight. If the resilient mounts supporting missiles have nonlinear force-deflection characteristics, vibration test results become more different from the true results. This paper proposes to support missiles with an additional resilient mount such as a bunge code in order to solve those problems coming from mounting vertically-launched missiles as laid down horizontally in vibration tests. The proposed approach enables to obtain the same test results as in their actual mounting condition even though vertically-launched missiles are mounted in a different direction.

균일 유동장내에서의 경사진 원형실린더의 유동유기진동 특성 연구 (Experimental Study on the Flow-Induced Vibration of Inclinced Circular Cylinders in Uniform Flow)

  • 정태영;홍섭;문석준;함일배;이헌곤
    • 소음진동
    • /
    • 제5권3호
    • /
    • pp.303-311
    • /
    • 1995
  • Tests on flow-induced vibration of inclined cylinders in uniform flow were performed in the cavitation tunnel at the Korea Instituteof Machinery and Metals. The test program was intended to investigate flow-induced vibration characteristic of the cylinders with three different inclined angles of 10$^\circ$, 20$^\circ$ and 30$^\circ$ and to estimate the fluid force coefficients acting on the cylinders. Important observations are as follows: 1) Numal drag is dominant compared with viscous drag for the inclined angle over 20.deg. and it has the value from 1.7 to 2.0 as was observed by other researchers. 2) Lift force coefficient has large value at the lock-in range determined by 4$\Theta/f_nD$<8. Measured maximum lift force coefficients at the inclined angle of 30.$^\circ$ and 20$^\circ$ were 0.9 and 0.4 respectively.

  • PDF