• Title/Summary/Keyword: force-based

Search Result 6,422, Processing Time 0.038 seconds

Development of penetration rate prediction model using shield TBM excavation data (쉴드 TBM 현장 굴진데이터를 이용한 굴착속도 예측모델 개발)

  • La, You-Sung;Kim, Myung-In;Kim, Bumjoo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.519-534
    • /
    • 2019
  • Mechanized tunneling methods, including shield TBM, have been increasingly used for tunnel construction because of their relatively low vibration and noise levels as well as low risk of rock-falling accidents. In the excavation using the shield TBM, it is important to design penetration rate appropriately. In present study, both subsurface investigation data and shield TBM excavation data, produced for and during ${\bigcirc}{\bigcirc}{\sim}{\bigcirc}{\bigcirc}$ high-speed railway construction, were analyzed and used to compare with shield TBM penetration rates calculated using existing penetrating rate prediction models proposed by several foreign researchers. The correlation between thrust force per disk cutter and uniaxial compressive strength was also examined and, based on the correlation analysis, a simple prediction model for penetration rate was derived. The prediction results using the existing prediction models showed approximately error rates of 50~500%, whereas the results from the simple model proposed from this study showed an error rate of 15% in average. It may be said, therefore, that the proposed model has higher applicability for shield TBM construction in similar ground conditions.

A study on the field application of high strength steel pipe reinforcement grouting (고강도 강관 보강 그라우팅의 현장 적용성에 관한 연구)

  • Shin, Hyunkang;Jung, Hyuksang;Ryu, Yongsun;Kim, Donghoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.455-478
    • /
    • 2019
  • In this paper, we conducted experimental investigation on the field applicability through the verification of reinforcement effect of the steel pipe reinforcement grouting using high strength steel pipe. SGT275 (formerly known as STK400) steel pipe is generally applied to the traditional steel pipe reinforcement grouting method. However, the analysis of tunnel collapse cases applying the steel pipe reinforcement grouting shows that there are cases where the excessive bending and breakage of steel pipe occur. One of the reasons causing these collapses is the lack of steel pipe stiffness responding to the loosening load of tunnels caused by excavation. The strength of steel pipe has increased due to the recent development of high strength steel pipe (SGT550). However, since research on the reinforcement method considering strength increase is insufficient, there is a need for research on this. Therefore, in this study, we conducted experiments on the tensile and bending strength based on various conditions between high strength steel pipe, and carried out basic research on effective field application depending on the strength difference of steel pipe through the conventional design method. In particular, we verified the reinforcement effect of high strength steel pipe through the measurement results of deformed shape and stress of steel pipe arising from excavation after constructing high strength steel pipe and general steel pipe at actual sites. The research results show that high strength steel pipe has excellent bending strength and the reinforcement effect of reinforced grouting. Further, it is expected that high strength steel pipe will have an arching effect thanks to strength increase.

A Biomechanics-Based Ergonomic Analysis for Footware Development (풋웨어 개발을 위한 생체역학 기반 인간공학적 분석 : B-boy 신발 개발을 중심으로)

  • Hah, Chong-Ku;Jang, Young-Kwan;Kim, Jin-Hyun
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.8
    • /
    • pp.140-147
    • /
    • 2019
  • The purpose of this study is to find biomechanical parameters for optimal shoes production through an ergonomic usability assessment of five existing types of shoes preferred by B-BOY. Ten experts and ten non-experts participated in the experiment, and 12 infrared cameras (Qualis, Oqus), force plate (Kistler, 9286AA) and foot pressure plate (Zebris Gmbh, Zebris PDM-System) were used to obtain the data. The results of the study are as follows. First, P shoes with a friction coefficient of 0.38 and a free moment of 0.32 N/m/kg are desirable in terms of traction capability and safety. Second, on the cushion, it was found that the N shoes 2.51 N, sec/kg and non-expert, and 2.86 N and sec/kg were suitable. Third, it is deemed appropriate for C shoes with a forefoot average pressure of 10.11 KPa (right), 10.05 KPa (left), and V shoes with a rearfoot average pressure of 8.4 KPa (right) and 8.36 KPa (left). In conclusion, the combination of the structure and material of V shoes should be developed for traction and stability, N shoes for cushion, and walking balance for C and V shoes.

Estimation of the Terminal Velocity of the Worst-Case Fragment in an Underwater Torpedo Explosion Using an MM-ALE Finite Element Simulation (MM-ALE 유한요소 시뮬레이션을 이용한 수중 어뢰폭발에서의 최악파편의 종단속도 추정)

  • Choi, Byung-Hee;Ryu, Chang-Ha
    • Explosives and Blasting
    • /
    • v.37 no.3
    • /
    • pp.13-24
    • /
    • 2019
  • This paper was prepared to investigate the behavior of fragments in underwater torpedo explosion beneath a frigate or surface ship by using an explicit finite element analysis. In this study, a fluid-structure interaction (FSI) methodology, called the multi-material arbitrary Lagrangian-Eulerian (MM-ALE) approach in LS-DYNA, was employed to obtain the responses of the torpedo fragments and frigate hull to the explosion. The Euler models for the analysis were comprised of air, water, and explosive, while the Lagrange models consisted of the fragment and the hull. The focus of this modeling was to examine whether a worst-case fragment could penetrate the frigate hull located close (4.5 m) to the exploding torpedo. The simulation was performed in two separate steps. At first, with the assumption that the expanding skin of the torpedo had been torn apart by consuming 30% of the explosive energy, the initial velocity of the worst-case fragment was sought based on a well-known experimental result concerning the fragment velocity in underwater bomb explosion. Then, the terminal velocity of the worst-case fragment that is expected to occur before the fragment hit the frigate hull was sought in the second step. Under the given conditions, the possible initial velocities of the worst-case fragment were found to be very fast (400 and 1000 m/s). But, the velocity difference between the fragment and the hull was merely 4 m/s at the instant of collision. This result was likely to be due to both the tremendous drag force exerted by the water and the non-failure condition given to the frigate hull. Anyway, at least under the given conditions, it is thought that the worst-case fragment seldom penetrate the frigate hull because there is no significant velocity difference between them.

A Study on National Response Strategies of Large-scale Marine Disaster (대규모 해양재난의 국가적 대응전략에 관한 연구)

  • Lee, Choonjae
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.550-559
    • /
    • 2019
  • The sinking of the M/V SEWOL in April 2014 was not a mere marine accident, but a marine catastrophe. This grim case developed into a social tragedy that impinged the national sentiment and communal integrity. It is imperative that thorough provisions and measures be outlined at the national level with regard to massive marine accidents, oil pollution, and natural disasters that might critically affect government affairs. Pivoting on "The Black Swan Theory," a concept of improperly rationalizing a national crisis based on uncertainties, this research assesses a variety of response strategies that minimize the national economic and social damage caused by a large-scale marine disaster. Along with the effort of minimizing any potential defects in each protective barrier, the "Black Swan Detection System of the Marine Disaster" needs to be incorporated to prevent cases wherein such defects lead to an actual crisis. Maritime safety must be systematically unified under a supervisory organization, and a structure for maritime crisis on-scene command and cooperation must likewise be established in order that every force on the scene of a marine disaster may act effectively and consistently under the direction of an on-scene commander.

A Study on Offshore Ship-to-Ship Mooring Characteristics through Numerical Analysis (수치해석을 통한 해상 Ship-to-Ship 계류 특성에 관한 연구)

  • Lee, Sang-Won;Lee, Yun-Sok;Cho, Ik-Soon
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2019.05a
    • /
    • pp.135-137
    • /
    • 2019
  • In recent years, the need for ship-to-ship has emerged around the world as the volume of tanker carriers increases. In the case of STS mooring, a safety review should be carried out on other standards since the characteristics are different from the mooring at a typical wharf. However, there is no separate standard about STS in Korea. Therefore, in this study, STS mooring simulation and sensitivity analysis were performed using OPTIMOOR program, a commercial numerical analysis program, to identify STS mooring characteristics. The target sea area is modeled at D2 anchorage of Yeosu Port in Korea, and modeling of the target ship is selected as the case of VLCC-VLCC. Based on this, we tried to establish the standard for STS mooring safety evaluation. Numerical simulation results show that the STS mooring changes depending on the ship load condition, weather condition(wave period and wave height), encounter angle and pre-tension of mooring line. In addition, a risk matrix was created to set the safe external force range in the sea area. It is expected that the mooring characteristics of the STS can be grasped by this result and contribute to the revision of the mooring safety assessment standard.

  • PDF

Correlation Analysis between Beach Width and Wave Data on the East Coast of South Korea (동해안 주요 해빈의 해빈폭과 파랑의 상관성 분석)

  • Oh, Jung-Eun;Jeong, Weon-Mu;Kim, Ki-Hyun;Kang, Tae-Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.2
    • /
    • pp.73-87
    • /
    • 2019
  • Ocean waves are the driving force for the sediment transport and the beach process. However, wave actions are nonlinear and non-stationary, and the response of the beach is inconsistent in terms of reaction rate and magnitude. Therefore, the beach process is difficult to predict accurately. The purpose of this study is to identify the correlations between the shoreline change and ocean waves observed in the east coast of Korea. The relation of the beach width obtained from video monitoring at five sandy beaches and the wave data obtained from nearby wave monitoring at three points was analyzed. Although the correlations estimated over the whole data sets was not significant, the correlations estimated based on the seasonal period or wave conditions provided more noteworthy information. When the non-exceedance probability of the wave height was greater than 0.99, the wave period and beach width showed strong negative correlations. In case the non-exceedance probability of the wave period was greater than 0.99, the wave height and beach width showed strong negative correlations as well. Furthermore, the erosion rate of the beach width increased when the primary wave direction was close to normal to the coastline. Little significant seasonal or monthly change was found between the beach width and the wave, but it was greatly affected by intensive events such as typhoons. Thus, it is necessary to analyze in detail the wave height or period level explaining the change of beach width for more relevant and practical information.

Experimental Study on Reducing Effect for Surface Temperature of Recycled Synthetic-Resin Permeable Block (재생 합성수지 투수블록의 표면온도 저감효과에 관한 실험적 연구)

  • Lee, Chul-Hee;Lee, Arum;Shin, Eun-Chul;Ryu, Byung-Hyun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.1
    • /
    • pp.79-89
    • /
    • 2019
  • The field measurement and laboratory experiment were conducted to investigate the effect of reducing the surface temperature of the functional aspect of the heat island phenomenon of the permeable block which is made the recycled synthetic resin rather than the existing concrete permeable block. Field measurement was taken for 3 days in consideration of dry condition and wet condition and laboratory experiment was divided into dry condition, rainfall simulating condition, and wetting condition. The variations of temperature and the evaporation rate of water moisture content after experiment were confirmed. As a result of field measurement, it is confirmed that the surface temperature decreases due to the difference in albedo of the pore block surface rather than the cooling effect due to the latent heat of vaporization. The evaporation of moisture in a dry state where drought persisted or a certain level of moisture was not maintained in the surface layer. As a result of laboratory experiment, resin permeable block gives higher surface temperature when it is dry condition than concrete permeable block, but the evaporation of water in the pore is kept constant by capillary force in rainfall simulation condition, and higher temperature reduction rate. As a result of measuring the evaporation rate after laboratory experiment, it is confirmed that the effect of reducing temperature is increased as the evaporation rate of water is higher. Based on these results, correlation formula for evaporation rate and temperature reduction rate is derived.

An Evaluation of Loss Factor of Damping Treatment Materials for Panels of Railway Vehicles (철도차량용 패널 감쇠처리재의 감쇠계수 평가)

  • Kang, Gil-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.4
    • /
    • pp.489-496
    • /
    • 2019
  • This paper is a study on the evaluation of loss factor of damping treatment materials to reduce the noise and vibration for panels of railway vehicles and automobiles. In order to determine the modal parameters of damping materials, beam excitation tests were carried out using different type PVC coated aluminum and steel base beam specimens. The specimens were excited from 10 Hz to 1000 Hz frequency range using sinusoidal force, and transfer mobility data were measured by using an accelerometer. The loss factors were determined by using integrated program, based on theories of Half Power Method, Minimum Tangent Error Method, Minimum Angle Error Method and Phase Change Method, which enable to evaluate the parameters using modal circle fit and least squares error method. In the case of lower loss factor and data of linear characteristics, any method could be applied for evaluation of parameters, however the case of higher loss factor or data including non-linear characteristics, the minimum angle error method could reduce the loss factor evaluation. The obtained dynamic properties of the coating material could be used for application of Finite Element Method analyzing the noise control effects of complex structures such as carbody or under-floor boxes of rolling stock. The damping material will be very useful to control the structural noise, because the obtained modal loss factors of each mode show very good effect on over $2^{nd}$ mode frequency range.

3-Dimensional Numerical Analysis of Air Flow inside OWC Type WEC Equipped with Channel of Seawater Exchange and Wave Characteristics around Its Structure (in Case of Regular Waves) (해수소통구를 구비한 진동수주형 파력발전구조물 내에서 공기흐름과 구조물 주변에서 파랑특성에 관한 3차원수치해석(규칙파의 경우))

  • Lee, Kwang Ho;Lee, Jun Hyeong;Jeong, Ik Han;Kim, Do Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.242-252
    • /
    • 2018
  • It is well known that an Oscillating Water Column Wave Energy Converter (OWC-WEC) is one of the most efficient wave absorber equipment. This device transforms the vertical motion of water column in the air chamber into the air flow velocity and produces electricity from the driving force of turbine as represented by the Wells turbine. Therefore, in order to obtain high electric energy, it is necessary to amplify the water surface vibration by inducing resonance of the piston mode in the water surface fluctuation in the air chamber. In this study, a new type of OWC-WEC with a seawater channel is used, and the wave deformation by the structure, water surface fluctuation in the air chamber, air outflow velocity from the nozzle and seawater flow velocity in the seawater channel are evaluated by numerical analysis in detail. The numerical analysis model uses open CFD code OLAFLOW model based on multi-phase analysis technique of Navier-Stokes solver. To validate model, numerical results and existing experimental results are compared and discussed. It is revealed within the scope of this study that the air flow velocity at nozzle increases as the Ursell number becomes larger, and the air velocity that flows out from the inside of the air chamber is larger than the velocity of incoming air into the air chamber.