• Title/Summary/Keyword: force-based

Search Result 6,405, Processing Time 0.038 seconds

Relationship between 3D Ground Reaction Force and Leg Length Discrepancy during Gait among Standing Workers

  • Kim, Yong-Wook
    • PNF and Movement
    • /
    • v.20 no.1
    • /
    • pp.59-66
    • /
    • 2022
  • Purpose: The aim of this research was to verify the relationship between three-dimensional (3D) ground reaction force (GRF) and severity of leg length discrepancy (LLD) while walking at a normal speed. It used a 3D motion analysis system with force platforms in standing workers with LLD. Methods: Subjects comprising 45 standing workers with LLD were selected. Two force platforms were used to acquire 3D GRF data based on a motion analysis system during gait. Vicon Nexus and Visual3D v6 Professional software were used to analyze kinetic GRF data. The subjects were asked to walk on a walkway with 40 infrared reflective markers attached to their lower extremities to collect 3D GRF data. Results: The results indicated the maximal force in the posterior and lateral direction of the long limb occurring in the early stance phase during gait had significant positive correlation with LLD severity (r = 0.664~0.738, p <0.01). In addition, the maximal force medial direction of the long limb occurring in the late stance phase showed a highly positive correlation with the LLD measurement (r = 0.527, p <0.01). Conclusion: Our results indicate that greater measured LLD severity results in more plantar pressure occurring in the foot area during heel contact to loading response of the stance phase and the stance push-off period during gait.

A Comparative Study on Displacement-Based Seismic Design Method of Bridge Structures (변위기반설계법에 의한 교량 내진설계의 비교연구)

  • Ju, Jeong-Hun;Cho, Yang-Hee
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.308-315
    • /
    • 2006
  • Most of seismic designs of major structures up to now have been performed by the traditional 'force-based design' approaches. However, they are not so efficient to evaluate the structural deformations by potential nonlinear behaviors which are directly related with the damages or performance levels during earthquakes. Lately, based on this situation, various kinds of new seismic design approaches based on the deformation, which is called 'displacement-based design' procedures, have been proposed. In this paper, most of detail techniques and procedures of the new design methods in the literature are comparatively reviewed and evaluated first, followed by a series of design examples of typical bridge structures. Comparing the results with those of the existing force-based design, the improved levels of performance and economy of the displacement-based seismic design have been validated.

  • PDF

Development of a Direct Drive Scara Robot Manipulator and PC-Based Preliminary Force/Motion Control (직접구동식 스카라 로봇의 개발 및 개인용 컴퓨터를 이용한 기초 힘/운동 제어)

  • Kim, D.H.;Park, D.Y.;Park, H.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.10
    • /
    • pp.25-31
    • /
    • 1995
  • In this paper, a direct drive scalar robot manipulator is constructed and its mechanical machanism for operation is explained. Also, a motion controller board for the direct drive robot manipulator was developed where the IBM 486 computer is the main controller. For the developed direct drive robot, a force/motion control algorithm based on an active compliance scheme is developed. A preliminary experiment using the developed direct drive for a peg-in-hole job was done by implementing the control algorithm.

  • PDF

Development of a Wheel Slip Control System for Vehicle Cornering Stability (차량 선회 안정성을 위한 휠 슬립 제어시스템 개발)

  • Hong, Dae-Gun;Huh, Kun-Soo;Hwang, In-Yong;SunWoo, Myoung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.174-180
    • /
    • 2006
  • The wheel slip control systems are able to control the braking force more accurately and can be adapted to different vehicles more easily than conventional braking control systems. In order to achieve the superior braking performance through the wheel slip control, real-time information such as the tire braking force at each wheel is required. In addition, the optimal target slip values need to be determined depending on the braking objectives such as minimum braking distance, stability enhancement, etc. In this paper, a wheel slip control system is developed for maintaining the vehicle stability based on the braking monitor, wheel slip controller and optimal target slip assignment algorithm. The braking monitor estimates the tire braking force, lateral tire force and brake disk-pad friction coefficient utilizing the extended Kalman filter. The wheel slip controller is designed based on the sliding mode control method. The target slip assignment algorithm is proposed to maintain the vehicle stability based on the direct yaw moment controller and fuzzy logic. The performance of the proposed wheel slip control system is verified in simulations and demonstrates the effectiveness of the wheel slip control in various road conditions.

A one-dimensional model for impact forces resulting from high mass, low velocity debris

  • Paczkowski, K.;Riggs, H.R.;Naito, C.J.;Lehmann, A.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.831-847
    • /
    • 2012
  • Impact from water-borne debris during tsunami and flood events pose a potential threat to structures. Debris impact forces specified by current codes and standards are based on rigid body dynamics, leading to forces that are dependent on total debris mass. However, shipping containers and other debris are unlikely to be rigid compared to the walls, columns and other structures that they impact. The application of a simple one-dimensional model to obtain impact force magnitude and duration, based on acoustic wave propagation in a flexible projectile, is explored. The focus herein is on in-air impact. Based on small-scale experiments, the applicability of the model to predict actual impact forces is investigated. The tests show that the force and duration are reasonably well represented by the simple model, but they also show how actual impact differs from the ideal model. A more detailed three-dimensional finite element model is also developed to understand more clearly the physical phenomena involved in the experimental tests. The tests and the FE results reveal important characteristics of actual impact, knowledge of which can be used to guide larger scale experiments and detailed modeling. The one-dimensional model is extended to consider water-driven debris as well. When fluid is used to propel the 1-D model, an estimate of the 'added mass' effect is possible. In this extended model the debris impact force depends on the wave propagation in the two media, and the conditions under which the fluid increases the impact force are discussed.

Determination of stay cable force based on effective vibration length accurately estimated from multiple measurements

  • Chen, Chien-Chou;Wu, Wen-Hwa;Huang, Chin-Hui;Lai, Gwolong
    • Smart Structures and Systems
    • /
    • v.11 no.4
    • /
    • pp.411-433
    • /
    • 2013
  • Due to its easy operation and wide applicability, the ambient vibration method is commonly adopted to determine the cable force by first identifying the cable frequencies from the vibration signals. With given vibration length and flexural rigidity, an analytical or empirical formula is then used with these cable frequencies to calculate the cable force. It is, however, usually difficult to decide the two required parameters, especially the vibration length due to uncertain boundary constraints. To tackle this problem, a new concept of combining the modal frequencies and mode shape ratios is fully explored in this study for developing an accurate method merely based on ambient vibration measurements. A simply supported beam model with an axial tension is adopted and the effective vibration length of cable is then independently determined based on the mode shape ratios identified from the synchronized measurements. With the effective vibration length obtained and the identified modal frequencies, the cable force and flexural rigidity can then be solved using simple linear regression techniques. The feasibility and accuracy of the proposed method is extensively verified with demonstrative numerical examples and actual applications to different cable-stayed bridges. Furthermore, several important issues in engineering practice such as the number of sensors and selection of modes are also thoroughly investigated.