• Title/Summary/Keyword: force-based

Search Result 6,405, Processing Time 0.031 seconds

Machine learning-based prediction of wind forces on CAARC standard tall buildings

  • Yi Li;Jie-Ting Yin;Fu-Bin Chen;Qiu-Sheng Li
    • Wind and Structures
    • /
    • v.36 no.6
    • /
    • pp.355-366
    • /
    • 2023
  • Although machine learning (ML) techniques have been widely used in various fields of engineering practice, their applications in the field of wind engineering are still at the initial stage. In order to evaluate the feasibility of machine learning algorithms for prediction of wind loads on high-rise buildings, this study took the exposure category type, wind direction and the height of local wind force as the input features and adopted four different machine learning algorithms including k-nearest neighbor (KNN), support vector machine (SVM), gradient boosting regression tree (GBRT) and extreme gradient (XG) boosting to predict wind force coefficients of CAARC standard tall building model. All the hyper-parameters of four ML algorithms are optimized by tree-structured Parzen estimator (TPE). The result shows that mean drag force coefficients and RMS lift force coefficients can be well predicted by the GBRT algorithm model while the RMS drag force coefficients can be forecasted preferably by the XG boosting algorithm model. The proposed machine learning based algorithms for wind loads prediction can be an alternative of traditional wind tunnel tests and computational fluid dynamic simulations.

A Study about Behavior of Steel Column Members under Varying Axial Force (변동축력에 의한 철골기둥부재의 거동에 관한 연구)

  • Oh, Sang-Hoon;Oh, Young-Suk;Hong, Soon-Jo;Park, Hae-Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.179-188
    • /
    • 2011
  • The performance-based design is highlighted as an alternative for the current design method, which cannot definitely specify the performance level that a building requires. Research on it is already in progress, however, in developed countries like the United States and Japan, to establish the basis for a performance-based design. Many studies on such design are also being conducted in South Korea, but South Korea still lags behind other countries in all-around technology. On the other hand, the column members, especially the lower external column, are affected by the variation of the axial force by overturning the moments in the case of lateral loads by earthquake. Varying the axial force can affect the time of local buckling and the ultimate behavior. Thus, in this study, the structural performance, such as the time of local buckling and the ultimate behavior, was analyzed through an experimental study on column members under varying axial force. The feasibility of a domestic study proposing a performance level with a story drift angle formed about a structural-performance-based steel structure design was also verified.

Multi-mode cable vibration control using MR damper based on nonlinear modeling

  • Huang, H.W.;Liu, T.T.;Sun, L.M.
    • Smart Structures and Systems
    • /
    • v.23 no.6
    • /
    • pp.565-577
    • /
    • 2019
  • One of the most effective countermeasures for mitigating cable vibration is to install mechanical dampers near the anchorage of the cable. Most of the dampers used in the field are so-called passive dampers where their parameters cannot be changed once designed. The parameters of passive dampers are usually determined based on the optimal damper force obtained from the universal design curve for linear dampers, which will provide a maximum additional damping for the cable. As the optimal damper force is chosen based on a predetermined principal vibration mode, passive dampers will be most effective if cable undergoes single-mode vibration where the vibration mode is the same as the principal mode used in the design. However, in the actual engineering practice, multi-mode vibrations are often observed for cables. Therefore, it is desirable to have dampers that can suppress different modes of cable vibrations simultaneously. In this paper, MR dampers are proposed for controlling multi-mode cable vibrations, because of its ability to change parameters and its adaptability of active control without inquiring large power resources. Although the highly nonlinear feature of the MR material leads to a relatively complex representation of its mathematical model, effective control strategies can still be derived for suppressing multi-mode cable vibrations based on nonlinear modelling, as proposed in this paper. Firstly, the nonlinear Bouc-wen model is employed to accurately portray the salient characteristics of the MR damper. Then, the desired optimal damper force is determined from the universal design curve of friction dampers. Finally, the input voltage (current) of MR damper corresponding to the desired optimal damper force is calculated from the nonlinear Bouc-wen model of the damper using a piecewise linear interpolation scheme. Numerical simulations are carried out to validate the effectiveness of the proposed control algorithm for mitigating multi-mode cable vibrations induced by different external excitations.

Experimental study on the method of estimating the vertical design wave force acting on a submerged dual horizontal plate

  • Kweon, Hyuck-Min;Oh, Sang-Ho;Choi, Young-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.569-579
    • /
    • 2013
  • A steel-type breakwater that uses a submerged dual horizontal porous plate was originally proposed by Kweon et al. (2005), and its hydrodynamic characteristics and design methodology were investigated in a series of subsequent researches. In particular, Kweon et al. (2011) proposed a method of estimating the vertical uplift force that acts on the horizontal plate, applicable to the design of the pile uplift drag force. However, the difference between the method proposed by Kweon et al. (2011), and the wave force measured at a different time without a phase difference, have not yet been clearly analyzed. In this study, such difference according to the method of estimating the wave force was analyzed, by measuring the wave pressure acting on a breakwater model. The hydraulic model test was conducted in a two-dimensional wave flume of 60.0 m length, 1.5 m height and 1.0 m width. The steepness range of the selected waves is 0.01~0.03, with regular and random signals. 20 pressure gauges were used for the measurement. The analysis results showed that the wave force estimate in the method of Kweon et al. (2011) was smaller than the wave force calculated from the maximum pressure at individual points, under a random wave action. Meanwhile, the method of Goda (1974) that was applied to the horizontal plate produced a smaller wave force, than the method of Kweon et al. (2011). The method of Kweon (2011) was already verified in the real sea test of Kweon et al. (2012), where the safety factor of the pile uplift force was found to be greater than 2.0. Based on these results, it was concluded that the method of estimating the wave force by Kweon et al. (2011) can be satisfactorily used for estimating the uplift force of a pile.

A Study on Defense Technology Level Evaluation of Force Support Systems (국방 전력지원체계 기술수준조사에 대한 연구)

  • Lee, Donghun;Hong, Seongdon;Kim, Young-Geon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.2
    • /
    • pp.112-119
    • /
    • 2014
  • A force support system is composed of capital components such as combat equipments, supplies and so on to enable constant fighting power capability. Private technology level evaluation is on the rise as an important spin-on method in force support systems, which requires 92% of total munitions requirements, to obtain superior private technology. The evaluation of the private sector technology level on Korean force support systems has been conducted for the first time as follows: this research chose 38 items to be acquired within 2-3 years and grouped either identical or similar technology among those 38 items. A technology evaluating method was established based on the analysis of domestic and foreign technology level evaluations. Evaluation was performed by a Delphi survey from 180 private and military experts. To obtain an objective index and raise political availability, a technology system map and standard document were developed and applied to all 38 items.

Experiments of Force Control Algorithms for Compliant Robot Motion

  • Kim, Dong-Hee;Park, Jong-Hyeon;Song, Ji-Hyuk;Hur, Jong-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1786-1790
    • /
    • 2004
  • The main objective of this paper is to analyze the performance of various force control algorithms in improving and adjusting the compliance of industrial robots in contact with their environment. Some of fundamental force control algorithms such as sensorless control, impedance control and hybrid position/force control are theoretically analyzed and simulated for various situations of an environment, and then a series of experiments using them were performed. In this paper, a control scheme to use position control in implementing the impedance control was investigated in order to nullify the effect of joint friction. The new reference trajectory is generated using contact force feedback and original desired trajectory. And an inner position control loop is designed to provide accurate position tracking for the new reference trajectory and good disturbance rejection. Experiments to insert a peg in a hole (so-called the peg-in-a-hole task) were performed with HILS (hardware-in-theloop simulation) system based on the results of the analyses and simulations on the characteristics of each control algorithm. The experiments showed that various force control methods improved the performance of robots in close contact with the environment by adjusting their compliance with respect to an arbitrary set of coordinates.

  • PDF

Elimination of environmental temperature effect from the variation of stay cable force based on simple temperature measurements

  • Chen, Chien-Chou;Wu, Wen-Hwa;Liu, Chun-Yan;Lai, Gwolong
    • Smart Structures and Systems
    • /
    • v.19 no.2
    • /
    • pp.137-149
    • /
    • 2017
  • Under the interference of the temperature effect, the alternation of cable force due to damages of a cable-stayed bridge could be difficult to distinguish. Considering the convenience and applicability in engineering practice, simple air or cable temperature measurements are adopted in the current study for the exclusion of temperature effect from the variation of cable force. Using the data collected from Ai-Lan Bridge located in central Taiwan, this work applies the ensemble empirical mode decomposition to process the time histories of cable force, air temperature, and cable temperature. It is evidently observed that the cable force and both types of temperature can all be categorized as the daily variation, long-term variation, and high-frequency noise in the order of decreasing weight. Moreover, the correlation analysis conducted for the decomposed variations of all these three quantities undoubtedly indicates that the daily and long-term variations with different time shifts have to be distinguished for accurately evaluating the temperature effect on the variation of cable force. Finally, consistent results in reducing the range of cable force variation after the elimination of temperature effect confirm the validity and stability of the developed method.

Unsteady Aerodynamic Loads on High Speed Trains Passing by Each Other

  • Hwang, Jae-Ho;Lee, Dong-Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.8
    • /
    • pp.867-878
    • /
    • 2000
  • In order to study unsteady aerodynamic loads on high speed trains passing by each other 350km/h, three-dimensional flow fields around trains during the crossing event are numerically simulated using three-dimensional Euler equations. Roe's FDS with MUSCL interpolation is employed to simulate wave phenomena. An efficient moving grid system based on domain decomposition techniques is developed to analyze the unsteady flow field induced by the restricted motion of a train on a rail. Numerical simulations of the trains passing by on the double-track are carried out to study the effect of the train nose-shape, length and the existence of a tunnel on the crossing event. Unsteady aerodynamic loads-a side force and a drag force-acting on the train during the crossing are numerically predicted and analyzed. The side force mainly depends on the nose-shape, and the drag force depends on tunnel existence. Also. a push-pull (i.e.impluse force) force successively acts on each car and acts in different directions between the neighborhood cars. The maximum change of the impulsive force reaches about 3 tons. These aerodynamic force data are absolutely necessary to evaluate the stability of high speed multi-car trains. The results also indicate the effectiveness of the present numerical method for simulating the unsteady flow fields induced by bodies in relative motion.

  • PDF

A Study on the Low Force Estimation of Skeletal Muscle by using ICA and Neuro-transmission Model (독립성분 분석과 신전달 모델을 이용한 근육의 미세한 힘의 추정에 관한 연구)

  • Yoo, Sae-Keun;Youm, Doo-Ho;Lee, Ho-Yong;Kim, Sung-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.632-640
    • /
    • 2007
  • The low force estimation method of skeletal muscle was proposed by using ICA(independent component analysis) and neuro-transmission model. An EMG decomposition is the procedure by which the signal is classified into its constituent MUAP(motor unit action potential). The force index of electromyography was due to the generation of MUAP. To estimate low force, current analysis technique, such as RMS(root mean square) and MAV(mean absolute value), have not been shown to provide direct measures of the number and timing of motoneurons firing or their firing frequencies, but are used due to lack of other options. In this paper, the method based on ICA and chemical signal transmission mechanism from neuron to muscle was proposed. The force generation model consists of two linear, first-order low pass filters separated by a static non-linearity. The model takes a modulated IPI(inter pulse interval) as input and produces isometric force as output. Both the step and random train were applied to the neuro-transmission model. As a results, the ICA has shown remarkable enhancement by finding a hidden MAUP from the original superimposed EMG signal and estimating accurate IPI. And the proposed estimation technique shows good agreements with the low force measured comparing with RMS and MAV method to the input patterns.

Development of Tire Vertical Force Estimation Algorithm in Real-time using Tire Inner Surface Deformation (타이어 내부 표면 변형량을 이용한 타이어 수직하중 실시간 추정 알고리즘 개발)

  • Lee, Jaehoon;Kim, Jin-Oh;Heo, Seung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.142-147
    • /
    • 2013
  • Over the past few years, intelligent tire is developed very actively for more accurate measurement of real-time tire forces generated during vehicle driving situation. Information on the force of intelligent tire could be used very usefully to chassis control systems of a vehicle. Intelligent tire is based on deformation of tire's inner surface from the waveform of a SAW, or Surface Acoustic Wave. The tire vertical force is estimated by using variance analysis of sensor signals. The estimated tire vertical force is compared with the tire vertical force generated during vehicle driving situation in real-time environment. The scope of this paper is a correlation study between the measured sensor signals and the tire vertical force generated during vehicle driving situation.