• Title/Summary/Keyword: force vibration

Search Result 2,594, Processing Time 0.029 seconds

Miniaturization and Optimization of Electromagnetic Actuators for Implantable Hearing Device Based on MEMS Technology (MEMS 기술 기반 이식형 청각 장치용 전자기 엑츄에이터의 소형화 및 최적화)

  • Kim, Min-Kyu;Jung, Yong Sub;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.99-104
    • /
    • 2018
  • A micro electromagnetic actuator with high vibration efficiency is proposed for use in an implantable hearing device. The actuator, which can be implanted in the middle ear, consists of membranes based on the stainless steel 304 (SUS-304), and other components. In conventional actuators, in which a thick membrane and a silicone elastomer are used, the size reduction was difficult. In order to miniaturize the size of the actuator, it is necessary to reduce the size of the actuation potion that generates the driving force, resulting in reduction of the electromagnetic force. In this paper, the electromagnetic actuator is further miniaturized by the metal membrane and the vibration amplitude is also optimized. The actuator designed according to the simulation results was fabricated by using micro-electro-mechanical systems (MEMS) technology. In particular, a $20{\mu}m$ thick metal membrane was fabricated using the erosion process, which reduced the length of the actuator by more than $400{\mu}m$. In the experiments, the vibration displacement characteristics of the optimized actuator were above 400 nm within the range of 0.1 to 1 kHz when a current of $1mA_{rms}$ was applied to the coil.

Vibration from a Shaft-Bearing-Plate System Due to an Axial Excitation of Helical Gears

  • Park, Chan-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2105-2114
    • /
    • 2006
  • In this paper, a simplified model is studied to predict analytically the vibration from the helical gear system due to an axial excitation of helical gears. The simplified model describes gear, shaft, bearing, and housing. In order to obtain the axial force of helical gears, the mesh stiffness is calculated in the load deflection relation. The axial force is obtained from the solution of the equation of motion, using the mesh stiffness. It is used as a longitudinal excitation of the shaft, which in turn drives the gear housing through the bearing. In this study, the shaft is modeled as a rod, while the bearing is modeled as a parallel spring and damper only supporting longitudinal forces. The gear housing is modeled as a clamped circular plate with viscous damping. For the modeling of this system, transfer matrices for the rod and bearing are used, using a spectral method with four pole parameters. The model is validated by finite element analysis. Using the model, parameter studies are carried out. As a result, the linearized dynamic shaft force due to the gear excitation in the frequency domain was proposed. Out-of-plan displacement from the forced vibrating circular plate and the renewed mode normalization constant of the circular plate were also proposed. In order to control the axial vibration of the helical gear system, the plate was more important than the shaft and the bearing. Finally, the effect of the dominant design parameters for the gear system can be investigated by this model.

Analysis of excitation forces for the prediction of the vehicle interior noise by the powertrain (Powertrain에 의한 차량실내소음 예측을 위한 엔진 가진력 해석에 관한 연구)

  • Lee, Joo-Hyung;Kim, Sung-Jong;Kim, Tae-Yong;Lee, Sang-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.82-88
    • /
    • 2006
  • The objective of this paper is to get excitation forces of the engine. A powertrain geometry model is produced by CATIA and its FE model is made by MSC/Patran. A vibration mode analysis which makes us know the natural frequency and mode shape and a running mode analysis which measures the mode shape as a relative displacement about one reference point by measuring the acceleration of each bracket to take a place at the running vehicle are experimentally implemented. After getting a satisfied MAC value by doing a correlation about a measured mode analysis value and analyzed value through MSC/Nastran software, all components are assembled through MSC/ADAMS software which is a dynamic analysis tool. We can predict the vibration of brackets which is the last points to occur the force of the engine combustion by analyzing the combustion force produced by engine mechanism.

  • PDF

Fatigue Analysis of Balance Shaft Housing Considering Non-linear Force Condition (비선형 하중 조건을 고려한 밸런스 샤프트 하우징의 내구평가)

  • Lee, Dong-Won;Kim, Chan-Jung;Bae, Chul-Yong;Kwon, Sung-Jin;Lee, Bong-Hyun;Kim, Dong-Chul
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.393-398
    • /
    • 2007
  • Balance shaft has a key role in reducing a engine vibration in a vehicle and widely applied for current models. Since balance shaft module consists many sub-component and each part had its own operational characteristics, some different analysis background should be integrated into one sub-part in balance shaft module and this is the main obstacles in making a design process. Moreover, the balancing shaft rotating in high speed and such condition requires large safety factors in a design process owing to a lot of unexpected problems with the overwhelming rotation. Balance shaft is the core-component generating the intended unbalance as well as canceling the unbalance force or moment by the engine module. So, the balance shaft should meet the high fatigue resistance not to mention of NVH performance. In this paper, a design strategy focused on balance shaft is developed to build a optimal model considering a engine vibration. Putting the unbalance mass distribution as main design parameter, some candidate model is verified with structural and fatigue analysis most appropriate model is proposed here.

  • PDF

Prestress-Loss Monitoring Technique for Prestressd Concrete Girders using Vibration-based System Identification (진동기반 구조식별을 통한 프리스트레스트 콘크리트 거더의 긴장력 손실 검색 기법)

  • Ho, Duc-Duy;Hong, Dong-Soo;Kim, Jeong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.123-132
    • /
    • 2010
  • This paper presents a prestress-loss monitoring technique for prestressed concrete (PSC) girder structures that uses a vibration-based system identification method. First, the theoretical backgrounds of the prestress-loss monitoring technique and the system identification technique are presented. Second, vibration tests are performed on a lab-scaled PSC girder for which the modal parameter was measured for several prestress-force cases. A numerical modal analysis is performed by using an initial finite element (FE) model from the geometric, material, and boundary conditions of the lab-scaled PSC girder. Third, a vibration-based system identification is performed to update the FE model by identifying structural parameters since the natural frequency of the FE model became identical to the experimental results. Finally, the feasibility of the prestress-loss monitoring technique is evaluated for the PSC girder model by using the experimentally measured natural frequency and numerically identified natural frequency for several prestress-force cases.

Application of Sliding Mode Fuzzy Control with Disturbance Estimator to Benchmark Problem for Wind Excited Building (풍하중을 받는 벤치마크 구조물의 진동제어를 위한 외란 예측기가 포함된 슬라이딩 모드 퍼지 제어)

  • Kim, Saang-Bum;Yun, Chung-Bang;Gu, Ja-In
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.246-250
    • /
    • 2000
  • A distinctive feature in vibration control of a large civil infrastructure is the existence of large disturbances, such as wind, earthquake, and sea wave forces. Those disturbances govern the behavior of the structure, however, they cannot be precisely measured, especially for the case of wind-induced vibration control. The sliding mode fuzzy control (SMFC), which is of interest in this study, may use not only the structural response measurement but also the wind force measurement. Hence, an adaptive disturbance estimation filter is introduced to generate a wind force vector at each time instance based on the measured structural response and the stochastic information of the wind force. The structure of the filter is constructed based on an auto-regressive with auxiliary input model. A numerical simulation is carried out on a benchmark problem of a wind-excited building. The results indicate that the overall performance of the proposed SMFC is as good as the other methods and that most of the performance indices improve as the adaptive disturbance estimation filter is introduced.

  • PDF

Vibration-based damage alarming criteria for wind turbine towers

  • Nguyen, Cong-Uy;Huynh, Thanh-Canh;Dang, Ngoc-Loi;Kim, Jeong-Tae
    • Structural Monitoring and Maintenance
    • /
    • v.4 no.3
    • /
    • pp.221-236
    • /
    • 2017
  • In this study, the feasibility of vibration-based damage alarming algorithms are numerically evaluated for wind turbine tower structures which are subjected to harmonic force excitation. Firstly, the algorithm of vibration-based damage alarming for the wind turbine tower (WTT) is visited. The natural frequency change, modal assurance criterion (MAC) and frequency-response-ratio assurance criterion (FRRAC) are utilized to recognize changes in dynamic characteristics due to a structural damage. Secondly, a finite element model based on a real wind turbine tower is established in a structural analysis program, Midas FEA. The harmonic force is applied at the rotor level as presence of excitation. Several structural damage scenarios are numerically simulated in segmental joints of the wind turbine model. Finally, the natural frequency change, MAC and FRRAC algorithm are employed to identify the structural damage occurred in the finite element model. The results show that these criteria could be used as promising damage existence indicators for the damage alarming in wind turbine supporting structures.

Multibody modeling and Analysis on Difference of Pin-reaction Force and Vibration caused by Offset in Fixed Outer Ring Type Cycloidal Speed Reducer (다물체 모델링을 이용한 외륜 고정형 Cycloid 감속기의 Offset에 의한 핀반력 및 진동차이 분석)

  • Kim, Hong Ki;Lee, Ki Bok;Yoo, Hong Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.11
    • /
    • pp.1057-1063
    • /
    • 2012
  • A cycloid speed reducer is a type of the speed reducers. The cycloid speed reducer has a eccentric rotating motion and offset to avoid some problem of assembly, so it has a disadvantage for vibration. In this paper, a multi-body dynamic model is developed for a cycloid speed reducer and the dynamic behaviors of the reducer are investigated. The cycloid speed reducer consists of cycloidal plate gears, housing gear, input shaft, output pin and shaft, and eccentric bearings. Using a CAD program, each component of cycloid reducer is modeled based on the offset and multi-body simulations are performed using Recurdyn. As a result, the pin reaction force and the amplitude of bearing displacement are increased by the offset.

Modeling of self-excited forces during multimode flutter: an experimental study

  • Siedziako, Bartosz;iseth, Ole O
    • Wind and Structures
    • /
    • v.27 no.5
    • /
    • pp.293-309
    • /
    • 2018
  • The prediction of multimode flutter relies, to a larger extent than bimodal flutter, on accurate modeling of the self-excited forces since it is challenging to perform experimental validation by using aeroelastic tests for a multimode case. This paper sheds some light on the accuracy of predicted self-excited forces by comparing numerical predictions of self-excited forces with measured forces from wind tunnel tests considering the flutter vibration mode. The critical velocity and the corresponding flutter vibration mode of the Hardanger Bridge are first determined using the classical multimode approach. Then, a section model of the bridge is forced to undergo a motion corresponding to the flutter vibration mode at selected points along the bridge, during which the forces that act upon it are measured. The measured self-excited forces are compared with numerical predictions to assess the uncertainty involved in the modeling. The self-excited lift and pitching moment are captured in an excellent manner by the aerodynamic derivatives. The self-excited drag force is, on the other hand, not well represented since second-order effects dominate. However, the self-excited drag force is very small for the cross-section considered, making its influence on the critical velocity marginal. The self-excited drag force can, however, be of higher importance for other cross-sections.

Linear Stability Analysis of an Out-of-plan Motion of Vibration of a Two Degree-of-freedom with Contact Stiffness (마찰기인 접촉 강성을 가지는 2-자유도계 면외 방향 진동 시스템의 선형 안정성 해석)

  • Joe, Yong-goo;Shin, Ki-hong;Lee, Hyun-young;Oh, Jae-Eung;Lee, Su-Gab
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.3 s.96
    • /
    • pp.259-265
    • /
    • 2005
  • A two-degree-of-freedom out-of-plane model with contact stiffness is presented to describe dynamical interaction between the pad and disc of a disc brake system. It is assumed that the out-of-plane motion of the system depends on the friction force acting along the in-plane direction. Dynamic friction coefficient is modelled as a function of both in-plane relative velocity and out-of-plane normal force. When the friction coefficient depends only on the relative velocity, the contact stiffness has the role of negative stiffness. The results of stability analysis show that the stiffness of both pad and disc is equally important. Complex eigen value analysis is conducted for the case that the friction coefficient is also dependent on the normal force. The results further verify the importance of the stiffness. It has also been found that increasing the gradient of friction coefficient with respect to the normal force makes the system more unstable.