• Title/Summary/Keyword: force standard

Search Result 871, Processing Time 0.033 seconds

New eight node serendipity quadrilateral plate bending element for thin and moderately thick plates using Integrated Force Method

  • Dhananjaya, H.R.;Pandey, P.C.;Nagabhushanam, J.
    • Structural Engineering and Mechanics
    • /
    • v.33 no.4
    • /
    • pp.485-502
    • /
    • 2009
  • A new 8-node serendipity quadrilateral plate bending element (MQP8) based on the Mindlin-Reissner theory for the analysis of thin and moderately thick plate bending problems using Integrated Force Method is presented in this paper. The performance of this new element (MQP8) is studied for accuracy and convergence by analyzing many standard benchmark plate bending problems. This new element MQP8 performs excellent in both thin and moderately thick plate bending situations. And also this element is free from spurious/zero energy modes and free from shear locking problem.

Chaotic response of a double pendulum subjected to follower force (종동력을 받는 진동계의 케이오틱 거동 연구)

  • 이재영;장안배
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.10a
    • /
    • pp.295-300
    • /
    • 1996
  • In this study, the dynamic instabilities of a nonlinear elastic system subjected to follower force are investigated. The two-degree-of-freedom double pendulum model with nonlinear geometry, cubic spring, and linear viscous damping is used for the study. The constant and periodic follower forces are considered. The chaotic nature of the system is identified using the standard methods, such as time histories, phase portraits, and Poincare maps, etc.. The responses are chaotic and unpredictable due to the sensitivity to initial conditions. The sensitivities to parameters, such as geometric initial imperfections, magnitude of follower force, and viscous damping, etc. is analysed. The strange attractors in Poincare map have the self-similar fractal geometry. Dynamic buckling loads are computed for various parameters, where the loads are changed drastically for the small change of parameters.

  • PDF

Fundamental study on volume reduction of cesium contaminated soil by using magnetic force-assisted selection pipe

  • Nishimura, Ryosei;Akiyama, Yoko;Manabe, Yuichiro;Sato, Fuminobu
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.3
    • /
    • pp.26-31
    • /
    • 2021
  • Advanced classification of Cs contaminated soil by using a magnetic force-assisted selection pipe was investigated. A selection pipe is a device that sort particles depending on their particle size, based on the relationship between buoyancy, drag, and gravity force acting on the particles. Radioactive cesium is concentrated in small-particle size soil components with a large specific surface area. Hence, the volume of the Cs contaminated soil can be reduced by recycling the large-particle size soil components with low radioactive concentration. One of the problems of the selection pipe was that the radioactive concentration of the stayed soil in the selection pipe exceeds 8000 Bq/kg, which is the standard value of recycling of Cs contaminated soil, due to low classification accuracy. In this study, magnetic fields were applied to the lab-scale selection pipe from upper side to improve the classification accuracy and to reduce the radioactive concentration of the stayed soil.

Distalization pattern of whole maxillary dentition according to force application points

  • Sung, Eui-Hyang;Kim, Sung-Jin;Chun, Youn-Sic;Park, Young-Chel;Yu, Hyung-Seog;Lee, Kee-Joon
    • The korean journal of orthodontics
    • /
    • v.45 no.1
    • /
    • pp.20-28
    • /
    • 2015
  • Objective: The purpose of this study was to observe stress distribution and displacement patterns of the entire maxillary arch with regard to distalizing force vectors applied from interdental miniscrews. Methods: A standard three-dimensional finite element model was constructed to simulate the maxillary teeth, periodontal ligament, and alveolar process. The displacement of each tooth was calculated on x, y, and z axes, and the von Mises stress distribution was visualized using color-coded scales. Results: A single distalizing force at the archwire level induced lingual inclination of the anterior segment, and slight intrusive distal tipping of the posterior segment. In contrast, force at the high level of the retraction hook resulted in lingual root movement of the anterior segment, and extrusive distal translation of the posterior segment. As the force application point was located posteriorly along the archwire, the likelihood of extrusive lingual inclination of the anterior segment increased, and the vertical component of the force led to intrusion and buccal tipping of the posterior segment. Rotation of the occlusal plane was dependent on the relationship between the line of force and the possible center of resistance of the entire arch. Conclusions: Displacement of the entire arch may be dictated by a direct relationship between the center of resistance of the whole arch and the line of action generated between the miniscrews and force application points at the archwire, which makes the total arch movement highly predictable.

The effect of resin cements and primer on retentive force of zirconia copings bonded to zirconia abutments with insufficient retention

  • Kim, Seung-Mi;Yoon, Ji-Young;Lee, Myung-Hyun;Oh, Nam-Sik
    • The Journal of Advanced Prosthodontics
    • /
    • v.5 no.2
    • /
    • pp.198-203
    • /
    • 2013
  • PURPOSE. The purpose of this study was to investigate the effect of resin cements and primer on the retentive force of zirconia copings bonded to zirconia abutments with insufficient retention. MATERIALS AND METHODS. Zirconia blocks (Lava, 3M ESPE, St. Paul, MN, USA) were obtained and forty sets of zirconia abutments and copings were fabricated using CAD/CAM technology. They were grouped into 4 categories as follows, depending on the types of resin cements used, and whether the primer is applied or not:Panavia F2.0 (P), Panavia F2.0 using Primer (PRIME Plus, Bisco Inc, Schaumburg, IL, USA) (PZ), Superbond C&B (S), and Superbond C&B using Primer (SZ). For each of the groups, the cementation was conducted. The specimens were kept in sterilized water ($37^{\circ}C$) for 24 hours. Retentive forces were tested and measured, and a statistical analysis was carried out. The nature of failure was recorded. RESULTS. The means and standard deviations of retentive force in Newton for each group were $265.15{\pm}35.04$ N (P), $318.21{\pm}22.24$ N (PZ), $445.13{\pm}78.54$ N (S) and $508.21{\pm}79.48$ N (SZ). Superbond C&B groups (S & SZ) showed significantly higher retentive force than Panavia F2.0 groups (P & PZ). In Panavia F2.0 groups, the use of primer was found to contribute to the increase of retentive force. On the other hand, in Superbond C&B groups, the use of primer did not influence the retention forces. Adhesive failure was observed in all groups. CONCLUSION. This study suggests that cementation of the zirconia abutments and zirconia copings with Superbond C&B have a higher retentive force than Panavia F2.0. When using Panavia F2.0, the use of primer increases the retentive force.

A Study on the Measurement of New Concept for the Contact Force between Rail and Wheel (신개념의 레일.차륜간 접촉력 측정에 관한 연구)

  • Hong, Yong-Ki;You, Won-Hee;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.6
    • /
    • pp.806-811
    • /
    • 2007
  • The derailment is defined as phenomena in which the wheels run off the rail due to inordinate lateral force generated when wheel flange contacts with the rail. Derailment coefficient is typical standard assessing running safety and derailment. The traditional method measuring by strain gage adhered to wheels is very complicated and easy to fail. It also requires too much cost and higher measurement technique. Therefore it can hardly ensure safety because we can't confirm at which time we need to identify safety. In this paper, we principally researched the method measuring easily wheel load generated by contacts between wheel flange and the rail, and lateral force. Correlation of vibration and displacement which was related physical amounts of wheel load and lateral force, was investigated and analyzed through analysis, experiment and measurement. And it is presents new measurement method of derailment coefficient which can estimate derailment possibility only by movement of vibration and displacement, by which we understand the rate for acceleration and displacement to contribute wheel load and lateral force and compare actual data of wheel load and lateral force measured from wheel.

Estimation of the Tsunami Force Acting on Onshore Oil Storage Tanks and Houses (육상저유탱크 및 육상가옥에 작용하는 지진해일파력의 추정)

  • Lee, Kwang-Ho;Park, Bo-Bae;Kim, Chang-Hoon;Choi, Nack-Hoon;Kim, Do-Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.5
    • /
    • pp.369-382
    • /
    • 2011
  • This study investigated the tsunami force acting on onshore structures using a numerical program, three-dimensional one-field model for immiscible multi-phase flows, which is based on Navier-Stokes solver. In this paper, the characteristics of tsunami of oil storage tank and house structures studied to the distance between the seawall and structure. In addition, the study compared and analyzed the tsunami forces determined by considering drag force only and considering both drag and inertia forces. These numerical results were compared with the design standard. As a results, the case of considering the both forces is more close to numerical result than that of considering the drag force only.

Difference of Ground Reaction Force and Center of Pressure Parameters according to Levels of Education during Chest Compression Resuscitation (가슴압박소생술 시 교육수준에 따른 지면반력 및 압력중심의 차이)

  • Han, KiHoon;Gil, Ho-Jong;Lee, Mi-Kyoung;Park, Joonsung;Kim, Jongbin
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.3
    • /
    • pp.220-225
    • /
    • 2021
  • Objective: The purpose of this study was to investigate the effect of levels of education on ground reaction force and center of pressure parameters during chest compression resuscitation. Method: Twenty male university students were divided into two groups; certified group (CG, n=10) and non-certified group (NCG, n=10). Two force plates were used to measure ground reaction force and center of pressure parameters during 30 times (three trials) chest compression resuscitation. Independent t-tests were used to compare ground reaction force and center of pressure parameters between two groups. An alpha level of 0.05 was used in all tests. Results: All chest-compression time parameters (total time, 1 systolic time, and diastolic time) in CG were significantly shorter than those in NCG (p<.05). Fy of the diastolic and Fz of the systolic in CG revealed significantly the larger GRF values and Fy of the systolic in CG showed significantly the smaller GRF value (p<.05). The standard deviation of Fz of the systolic and diastolic within the subject during 30 times chest-compression resuscitation revealed significantly the smaller values in CG (p<.05). Conclusion: First, CG performed chest compressions efficiently at an appropriate rate compared to NCG. Second, CG showed lower Fx and Fy values in both the mediolateral and anteroposterior axes compared to NCG, which reduced unnecessary chest-compression force consumption and minimized the movement in patients with cardiac arrest. Third, CG showed high Fz value of the systolic and low Fz value of the diastolic. Based on this, chest compression resuscitation was performed to increase the survival rate of cardiac arrest patients.

Fabrication of Nb SQUID on an Ultra-sensitive Cantilever (Nb SQUID가 탑재된 초고감도 캔티레버 제작)

  • Kim, Yun-Won;Lee, Soon-Gul;Choi, Jae-Hyuk
    • Progress in Superconductivity
    • /
    • v.11 no.1
    • /
    • pp.36-41
    • /
    • 2009
  • Superconducting quantum phenomena are getting attention from the field of metrology area. Following its first successful application of Josephson effect to voltage standard, piconewton force standard was suggested as a candidate for the next application of superconducting quantum effects in metrology. It is predicted that a micron-sized superconducting Nb ring in a strong magnetic field gradient generates a quantized force of the order of sub-piconewtons. In this work, we studied the design and fabrication of Nb superconducting quantum interference device (SQUID) on an ultra-thin silicon cantilever. The Nb SQUID and electrodes were structured on a silicon-on-insulator (SOI) wafer by dc magnetron sputtering and lift-off lithography. Using the resulting SOI wafer, we fabricated V-shaped and parallel-beam cantilevers, each with a $30-{\mu}m$-wide paddle; the length, width, and thickness of each cantilever arm were typically $440{\mu}m,\;4.5{\mu}m$, and $0.34{\mu}m$, respectively. However, the cantilevers underwent bending, a technical difficulty commonly encountered during the fabrication of electrical circuits on ultra-soft mechanical substrates. In order to circumvent this difficulty, we controlled the Ar pressure during Nb sputtering to minimize the intrinsic stress in the Nb film and studied the effect of residual stress on the resultant device.

  • PDF