• Title/Summary/Keyword: force sensing

Search Result 349, Processing Time 0.024 seconds

A Study on the Humidity Sensing Properties of Polyimide thin films prepared (진공증착중합법에 의해 제초된 폴리이미드 박막의 습도감지 특성에 관한 연구)

  • 황선양;김형권;이붕주;박구범;김영봉;이은학;이덕출
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.402-405
    • /
    • 1999
  • The Study of this paper is to establish the optimum fabricating condition of specimens using Vapor Deposition Polymerization Method which belongs to a mode of preparation of functional organic thin films with dry process and to develop thin film type humidity sensor which has good humidity sensitive Characteristics. Scanning electron microscopy Atomic force microscopy were used to analyze the characteristics of thin film and the basic structure of the humidity sensor is a parallel capacitor which consists of three layers of Al/PI/Al. The characteristics of fabricated samples were measured under various conditions and obtained linear characteristics in the range of 20∼80%RH independent of temperature change and low hysteresis characteristics.

  • PDF

Active Vibration Control of Flexible Cantilever Beam Using Piezoceramic Actuators and PID Controller (압전체 작동기와 PID 제어기를 이용한 유연 외팔보의 능동 전동 제어)

  • Choi, Soo-Young;Ahn, Jae-Hong;Lee, Jong-Sung;Park, Ki-Heon
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2073-2075
    • /
    • 2003
  • This paper presents the active vibration control of flexible cantilever beam using piezoceramic actuators. The transfer function from the force input to the bending displacement was obtained via modal analysis results and piezoelectric constitutive equations. For the active vibration control piezoceramic actuators and sensors were used to construct a flexible smart cantilever beam. To further enhance the sensing and actuation properties of the piezoceramics, a typical interdigitated electrode pattern was fabricated. The PID controller was designed via various simulation and experiment trials. It was shown that the PID controller could suppress vibration of the beam effectively. Simulations and experiments verified good performances of the designed controller.

  • PDF

Detection of Built-up Edge by AE Signal Analysis (AE 신호 분석에 의한 구성인선의 감지)

  • Oh, Min-Seok;Won, Jong-Sik;Jung, Youn-Gyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.18-24
    • /
    • 1999
  • ThisPaper investigates the feasibility of using acoustic emission signal analysis for the detection of built-up edge during machining. Experiments were conducted on a CNC-lathe using conventional carbide insert tools under various cutting conditions. The cutting forces were also measured for comparisons. Experimental evidence is presented which indicates that the presence of a built-up edge can significantly affect the generation of acoustic emission in metal cutting. It is shown that under conditions in which a built-up edge is generated, the variation of $AE_{rms}$ signal with cutting speed can be quite different from the generally accepted linear, monotonic increase as previously reported. The feasibility of utilizing $AE_{rms}$ in built-up edge sensing is suggested.

  • PDF

Design and Strain Analysis of Precision 3-component Load Cell (정밀 3분력(Fz, Fy, Mz) 로드셀의 설계 및 변형률해석)

  • Kim, Gab-Soon;Rhee, Se-Hun;Um, Ki-Woan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.222-232
    • /
    • 1999
  • This paper describes the development of a precision 3-component load cell with plate beams which may be used for measuring forces Fx, Fy and moment Mz simultaneously in industry. We have derived equations to predict the bending strains on the surface of the beams under forces or moment. We have also determined the attachment location of strain gages of each sensor and fabricated 3-component load cell. To evaluate the rated strain and interference error of each sensor, we have carried out characteristic test of precision 3-component load cell. It reveals that the rated strain calculated from the derived equations are good agreement with the results from Finite Element Method analysis.

  • PDF

Review of Radio Frequency Identification and Wireless Technology for Structural Health Monitoring

  • Dhital, Dipesh;Chia, Chen Ciang;Lee, Jung-Ryul;Park, Chan-Yik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.3
    • /
    • pp.244-256
    • /
    • 2010
  • Radio frequency identification(RFID) combined with wireless technology has good potential for structural health monitoring(SHM). We describe several advantages of RFID and wireless technologies for SHM, and review SHM examples with working principles, design and technical details for damage detection, heat exposure monitoring, force/strain sensing, and corrosion detection in concrete, steel, carbon fiber reinforced polymer(CFRP), and other materials. Various sensors combined with wireless communication are also discussed. These methodologies can be readily developed, implemented, and customized. There are some technical difficulties, but solutions are being addressed. Lastly, a surface acoustic wave-based RFID system is presented, and possible future trends of SHM based on RFID and wireless technology are presented.

Overview of flexure-based compliant microgrippers

  • Aia, Wenji;Xu, Qingsong
    • Advances in robotics research
    • /
    • v.1 no.1
    • /
    • pp.1-19
    • /
    • 2014
  • Microgripper is an essential device in the micro-operation system. It can convert other types of energy into mechanical energy and produce clamp movement with required chucking force, which enables it a broad application prospect in the domain of tiny components' processing and assembly, biomedicine and optics, etc. The performance of a microgripper is dependent on its power supply, type of drive, mechanism structure, sensing components, and controller. This paper presents a state-of-the-art survey of recent development on flexure-based microgrippers. According to the drive type, the existing microgrippers can be mainly classified as electrostatic microgripper, electrothermal microgripper, electromagnetic microgripper, piezoelectric microgripper, and shape memory alloy microgripper. Additionally, some different mechanisms, sensors, and control methods that are used in microgripper system are reviewed. The key issue of how to choose those components in microgripper system design is also addressed.

Soft Actuator Development for Artificial Muscle (인공근육개발을 위한 소프트 액추에이터 연구)

  • Kang, Gyeongji;Song, Kahye
    • The Journal of Korea Robotics Society
    • /
    • v.16 no.1
    • /
    • pp.17-22
    • /
    • 2021
  • Soft robot research has been actively conducted due to the advantages of soft materials that have less motion restrictions and higher energy efficiency compared to rigid robots. In particular, soft robots are being applied in more and more diverse fields, and the need for soft robots is increasing, especially when dealing with soft or deformable objects that rigid robots cannot perform. Various soft robots are being developed, and studies on artificial muscles with versatility, seamless integration with sensing, and self-healing capabilities are being proposed. In this study, we propose one of the most simple rectangular shaped HASEL (Hydraulically amplified self-healing electrostatic) actuators and compare the performance according to shape deformation such as the size or ratio of actuators and electrodes. Developing these actuators can be used in many ways for artificial muscles in soft robotics.

A Fine Manipulator with Compliance for Wafer Probing System (컴플라이언스를 갖는 웨이퍼 탐침 시스템용 미동 매니퓰레이터)

  • Choi, Kee-Bong;Kim, Soo-Hyun;Kwak, Yoon Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.68-79
    • /
    • 1997
  • A six DOF fine manipulator based on magnetic levitation is developed. Since most of magnetic levitation system are inherently unstable, a proposed magnetically levitated fine manipulator is implemented by use of an antagonistic structure to increase stability. From mathematical modeling and experiment, the equations of motion are derived. In addition, a six DOF sensing system is implemented by use of three 2-axis PSD sensors. A model reference-$H_{\infty}$ controller is applied to the system for the position control, In application of the fine manipulator, a wafer probing system is proposed to identify nonfunctional circuts. The probing system requires compliance to avoid destruction of DUT(device under test). A feedfor- ward-PD controllers are presented by the terms of the position accuracy, the settling time and the force accuracy.y.

  • PDF

Mixed Deployment Methods for Reinforcing Connectivity of Sensor Networks (센서네트워크 연결성 강화를 위한 거점 노드 혼합 배치 기법 연구)

  • Heo, Nojeong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.169-174
    • /
    • 2014
  • Practical deployment methods for sensor nodes are demanding as applications using sensor nodes increase. In particular, node connectivity is crucial not only for the network longevity but also for direct impacts on sensing and data collection capability. Economic requirement at building sensor networks and often limited access for sensor fields due to hostile environment force to remain at random deployment from air. However, random deployment often result in lost connection problem and inefficient network topology issue due to node irregularity. In this paper, mixed deployment of key nodes that have better communication capability is proposed to support the original deployment into working in an efficient way. Node irregularity is improved by introducing mixed nodes and an efficient mixed node density is also analyzed. Simulation results show that the mixed deployment method has better performance than the existing deployment methods.

Combining smart materials for enhancing intelligent systems: initial studies, success cases and research trends

  • Diaz Lantada, A.;Lafont Morgado, P.;Munoz-Guijosa, J.M.;Munoz Sanz, J.L.;Echavarri Otero, J.;Chacon Tanarro, E.;De la Guerra Ochoa, E.
    • Smart Structures and Systems
    • /
    • v.14 no.4
    • /
    • pp.517-539
    • /
    • 2014
  • The combined use of smart materials, complementing each others' characteristics and resulting in devices with optimised features, is providing new solutions in many industries. The use of ingenious combinations of smart materials has led to improvements in actuation speed and force, signal-to-noise ratio, sensor precision and unique capabilities such as self-sensing self-healing systems and energy autonomy. This may all give rise to a revival for numerous families of smart materials, for which application proposals had already reached a stationary situation. It may also provide the boost needed for the definitive industrial success of many others. This study focuses on reviewing the proposals, preliminary studies and success cases related to combining smart materials to obtain multifunctional, improved systems. It also examines the most outstanding applications and fields for the combined use of these smart materials. We will also discuss related study areas which warrant further research for the development of novel approaches for demanding applications.